x^2-y^2/x^2-y^2+xz-yz
Chọn đáp án đúng
\({ (x^{3}+3x^{2}y+3xy^{2}+y^{3}-z^{3}):(x+y-z) }\)
\(A. { x^{2}+y^{2}+z^{2}+2xy+xz+yz }\)
\(B. { x^{2}+y^{2}+z^{2}+2xy-xz-yz } \)
\(D. { x^{2}+y^{2}-z^{2}+2xy-xz-yz } \)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xz+xy}\ge\frac{x^2+y^2+z^2}{xy+yz+xz}\)
BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)
x+y+z=1/x+1/y+1/z.Tính x(1-yz)(y^2-xz)-y(1-xz)(x^2-yz)
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
Cho các số thực x, y, z thỏa mãn:xy/(x+y)=yz/(y+z)=xz/(x+z).Tính M=(x^2+y^2+z^2)/(xy+yz+xz)
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Câu 1:
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=-a^2\left(b-1\right)\left(b+1\right)+\left(b-1\right)\left(a+b\right)\)
\(=\left(b-1\right)\left(-a^2b-a^2+a+b\right)\)
\(=\left(b-1\right)\cdot\left[-b\left(a^2-1\right)-a\left(a-1\right)\right]\)
\(=\left(b-1\right)\left(a-1\right)\left[-b\left(a+1\right)-a\right]\)
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx