Những câu hỏi liên quan
TN
Xem chi tiết
NT
29 tháng 1 2016 lúc 21:12

máy tính sẵn sàng

Bình luận (0)
NB
31 tháng 1 2016 lúc 18:46

cậu giỏi nhỉ

Bình luận (0)
NT
31 tháng 1 2016 lúc 20:18

Nguyễn Huy Thắng á hả

Bình luận (0)
TC
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:08

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

Bình luận (0)
LT
Xem chi tiết
MD
21 tháng 1 2016 lúc 17:41

bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''

Bình luận (0)
LT
21 tháng 1 2016 lúc 17:35

hc o nha cho đó mk dg hc chi vaxma tốc độ

Bình luận (0)
H24
21 tháng 1 2016 lúc 17:39

bài này linh tinh quá ko hiểu

Bình luận (0)
H24
Xem chi tiết
NL
21 tháng 2 2021 lúc 23:31

Cứ áp dụng công thức \(\left(ln\left|u\right|\right)'=\dfrac{u'}{u}\) thôi

Còn câu dưới thì: \(\int\dfrac{axdx}{x^2\sqrt{x^2+a}}\)

Đặt \(u=\sqrt{x^2+a}\Rightarrow x^2=u^2-a\Rightarrow xdx=udu\)

\(\Rightarrow I=\int\dfrac{a.u}{u\left(u^2-a\right)}du\)

Nguyên hàm hữu tỉ khá cơ bản, tách ra bằng hệ số bất định

Bình luận (1)
H24
Xem chi tiết
NT
5 tháng 10 2021 lúc 21:05

b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)

\(\Leftrightarrow-4x+3+5x+2=0\)

\(\Leftrightarrow x=-5\)

Bình luận (0)
TB
Xem chi tiết
TQ
14 tháng 10 2015 lúc 19:20

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}\)

\(=\frac{1}{x}-\frac{1}{x+3}=\frac{x+3}{x.\left(x+3\right)}-\frac{x}{x.\left(x+3\right)}\)

\(=\frac{3}{x.\left(x+3\right)}=\frac{3}{x^2+3x}\)

Bình luận (0)
XK
Xem chi tiết
VT
4 tháng 6 2016 lúc 10:26

Tìm x, biết:

3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x2;5;10;17)

2(x1)(x3) +5(x3)(x8) +12(x8)(x20) 1x20 =34 (x1;3;8;20)

x+110 +2+111 x+112 =x+113 +x+114 

x1030 +x1443 +x595 +x1488 =0

Bình luận (0)
VT
4 tháng 6 2016 lúc 10:26

Trả lời luôn à bạn

Bình luận (0)