Bài 32. Các quy tắc tính đạo hàm

H24

a) Sử dụng giới hạn \(\mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\) và đẳng thức \(\ln \left( {x + h} \right) - \ln x = \ln \left( {\frac{{x + h}}{x}} \right) = \ln \left( {1 + \frac{h}{x}} \right),\) tính đạo hàm của hàm số \(y = \ln x\) tại điểm x > 0 bằng định nghĩa.

b) Sử dụng đẳng thức \({\log _a}x = \frac{{\ln x}}{{\ln a}}\,\,\left( {0 < a \ne 1} \right),\) hãy tính đạo hàm của hàm số \(y = {\log _a}x.\)

HM
22 tháng 9 2023 lúc 21:08

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết