Những câu hỏi liên quan
KR
Xem chi tiết
HP
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Bình luận (0)
LN
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 8 2018 lúc 7:44

Đáp án C

Bình luận (0)
NL
Xem chi tiết
NT
23 tháng 2 2021 lúc 22:09

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

Bình luận (0)
NL
23 tháng 2 2021 lúc 22:41

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

Bình luận (0)
QA
Xem chi tiết
HP
16 tháng 12 2020 lúc 9:07

\(y=f\left(x\right)=x^2-2x+3\)

\(f\left(0\right)=3;f\left(4\right)=11;f\left(1\right)=2\)

\(\Rightarrow max=f\left(4\right)=11\Leftrightarrow x=4\)

Bình luận (0)
HH
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 22:51

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} =  - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)

Hay \(S\left( { - 1;2} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số đạt giá trị nhỏ nhất bằng \(2\).

Bình luận (0)