Những câu hỏi liên quan
PM
Xem chi tiết
NL
5 tháng 1 2021 lúc 18:01

Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) đồng thời \(AH=\dfrac{AB}{2}=\dfrac{1}{2}\)

\(OH=\sqrt{R^2-AH^2}=\sqrt{1-\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}\) (cm)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2019 lúc 12:34

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có: Để học tốt Toán 9 | Giải bài tập Toán 9 nên là hình chữ nhật

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

Bình luận (0)
SK
Xem chi tiết
KD
25 tháng 4 2017 lúc 8:27

a) Vẽ OH⊥AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2=OB2−HB2=52−42=9⇒OH=3(cm).

b) Vẽ OK⊥CD. TỨ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI. Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm.

Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

Bình luận (0)
LS
25 tháng 4 2017 lúc 8:28

a) Vẽ OH ⊥ AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2 = OB2 – HB2 =52 – 42 = 9

⇒ OH = 3(cm).

b) Vẽ OK ⊥ CD. Tứ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI.

Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm. Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

Bình luận (0)
CP
Xem chi tiết
HH
14 tháng 7 2020 lúc 16:57

D M A J C O J B

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra : J là trung điểm của AB

Ta được : \(AJ=\frac{1}{2}AB=4cm\)

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 ( OA = R = 5cm )

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có :\(\widehat{I}=\widehat{J}=\widehat{M}=90^o\)nên là hcn

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KL
Xem chi tiết
PC
29 tháng 4 2021 lúc 12:43

Lời giải chi tiết

a) Kẻ OH⊥ABOH⊥AB tại H

Khi đó, đường tròn (O) có OH là 1 phần đường kính vuông góc với dây AB tại H

Suy ra HH là trung điểm của dây ABAB (Theo định lí 2 - trang 103) 

⇒HA=HB=AB2=82=4cm.⇒HA=HB=AB2=82=4cm.

Xét tam giác HOBHOB vuông tại HH, theo định lí Pytago, ta có:

OB2=OH2+HB2⇔OH2=OB2−HB2OB2=OH2+HB2⇔OH2=OB2−HB2

⇔OH2=52−42=25−16=9⇒OH=3(cm)⇔OH2=52−42=25−16=9⇒OH=3(cm).

Vậy khoảng cách từ tâm OO đến dây ABAB là 3cm3cm.

b) Vẽ OK⊥CDOK⊥CD tại K

Tứ giác KOHIKOHI có ba góc vuông (ˆK=ˆH=ˆI=900)(K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HIOK=HI.

Ta có HI=AH−AI=4−1=3cmHI=AH−AI=4−1=3cm, suy ra OK=3cm.OK=3cm.

Vậy OH=OK=3cm.OH=OK=3cm.

Hai dây ABAB và CDCD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

Bình luận (0)
 Khách vãng lai đã xóa
DH
29 tháng 4 2021 lúc 12:44

AB2=82=4cm." role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:19.2px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

Xét tam giác HOB vuông tại H, theo định lí Pytago, ta có:

OB2=OH2+HB2⇔OH2=OB2−HB2

⇔OH2=52−42=25−16=9⇒OH=3(cm).

Vậy khoảng cách từ tâm O đến dây AB là 3cm.

b) Vẽ OK⊥CD tại K

Tứ giác KOHI có ba góc vuông (K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HI.

Ta có 

Bình luận (0)
 Khách vãng lai đã xóa
DN
29 tháng 4 2021 lúc 12:46
hai lần số bi của Nam và Hải là 48 viên. Nếu Nam có thêm 6 viên thì số bi của Nam sẽ gấp 2 lần số bi của Hải. Tìm số bi ban đầu của mỗi bạn Mọi người giúp em giải bài này với ạ. Please!❤️
Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
AK
13 tháng 9 2021 lúc 15:26

Lời giải:

Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)

Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)

=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)

 OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)

=> OH22+ HB22= OB22(Đl Py-ta-go)

T/s:  OH22+ 622= R22

<=> OH22+36 = 1022=100

<=> OH22= 64 => OH = 8 (cm)

Bình luận (0)
 Khách vãng lai đã xóa
NT
13 tháng 9 2021 lúc 20:20

Gọi H là chân đường cao kẻ từ O 

=> H là trung điểm AB 

=> AH = AB/2 = 12/2 = 6 cm 

Theo định lí Pytago cho tam giác AOH vuông tại H

\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
14 tháng 12 2018 lúc 16:25

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.


Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

Bình luận (0)
AL
Xem chi tiết
KL
29 tháng 11 2023 lúc 18:39

loading... ∆OBH vuông tại H

⇒ OB² = OH² + BH² (Pytago)

⇒ BH² = OB² - OH²

= 5² - 4²

= 9

⇒ BH = 3 (cm)

Do OH ⊥ AB

⇒ H là trung điểm của AB

⇒ AB = 2BH = 2.3 = 6 (cm)

Bình luận (1)
NT
29 tháng 11 2023 lúc 18:37

Gọi OH là khoảng cách từ tâm O đến dây AB 

=>OH\(\perp\)AB tại H

=>OH=4cm

ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

ΔOHA vuông tại H

=>\(OH^2+HA^2=OA^2\)

=>\(HA^2+4^2=5^2\)

=>\(HA^2=5^2-4^2=9\)

=>HA=3(cm)

H là trung điểm của AB

=>\(AB=2\cdot AH=6\left(cm\right)\)

Bình luận (0)