Tìm tọa độ giao điểm M của đồ thị hàm số y = 2 x + 1 x − 1 và đường thẳng d : y = 3.
A. M 3 ; 4 .
B. M 4 ; 3 .
C. M 1 ; 3 .
D. M 0 ; 3 .
1) Xác đinh b và vẽ vẽ đồ thị hàm số y = 2 x + b Biết đồ thị đi qua điểm M (-1,1) 2) a) vẽ 2 đồ thị y = 2 x-1 và y = -x + 2 trên cùng một mặt phẳng tọa độ b) Tìm tọa độ giao điểm của 2 đồ thị trên
Bài 1.
Vì đths đi qua $M(-1;1)$ nên:
$y_M=2x_M+b$
$\Leftrightarrow 1=2.(-1)+b$
$\Leftrightarrow b=3$
Vậy đths có pt $y=2x+3$.
Hình vẽ:
Bài 2.
a. Hình vẽ:
Đường màu xanh là $y=2x-1$
Đường màu đỏ là $y=-x+2$
b.
PT hoành độ giao điểm:
$y=2x-1=-x+2$
$\Leftrightarrow x=1$
$y=2x-1=2.1-1=1$
Vậy tọa độ giao điểm của 2 đồ thị là $(1;1)$
1, đths y = 2x + b đi qua M(-1;1) <=> -2 + b = 1 <=> b = 3
2b, Hoành độ giao điểm thỏa mãn phương trình
2x - 1 = -x + 2 <=> x = 1
=< y = 2 - 1 = 1
Vậy y = 2x - 1 cắt y = -x + 2 tại A(1;1)
mình giải bên 24 rồi nhé, đths thì bạn tự vẽ
1, đths y = 2x + b đi qua M(-1;1) <=> -2 + b = 1 <=> b = 3
2b, Hoành độ giao điểm thỏa mãn phương trình
2x - 1 = -x + 2 <=> 3x = 3 <=> x = 1
=> y = 2 - 1 = 1
Vậy y = 2x - 1 cắt y = -x +2 tại A(1;1)
1. Cho hàm số y=(m-1,5)x + 5m
a/ Tìm m biết đồ thị hàm số đã cho cắt trục hoành tại điểm có hoành độ=-1
b/ CMR đồ thị hàm số đã cho luôn đi qua 1 điểm cố định với mọi m
2.a/ Vẽ đồ thị 2 hàm số sau trên cùng 1 hệ trục tọa độ: y=|x+2| và y=|2x|
b/ Tìm tọa độ giao điểm của 2 đồ thị trên
Cho hàm số: `y=x^2` và `y=-x+2`
`a,` Tìm tọa độ giao điểm của đồ thị `2` hàm số trên và tọa độ tung điểm `I` của đoạn thẳng `AB` biết điểm `A` có hoành độ dương
`b,` Tìm tọa độ điểm `M in (P): y =x^2` sao cho `ΔAMB` cân
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\\ =1-\dfrac{1}{46}\\ =\dfrac{45}{46}\\ \Rightarrow S< 1\)
Gọi ` ƯCLN(n+1 ; 2n+3)=d`
Ta có:
`n+1 vdots d => 2n+2 vdots d`
`2n+3 vdots d`
`=>(2n+3)-(2n+2) vdots d`
`=>2n+3-2n-2 vdots d`
`=>1 vdots d`
`=>ƯCLN(n+1; 2n+3)=1`
`=> (n+1)/(2n+3)` tối giản
Gọi ` ƯCLN(2n+1,3n+4)=d`
Ta có:
`2n+1 vdots d => 6n+3 vdots d`
`3n +4 vdots d =>6n+8 vdots d`
`=>(6n+8)-(6n+3) vdots d`
`=>6n+8-6n-3 vdots d`
`=>5 vdots d`
Giả sử phân số rút gọn được
`=>2n+1 vdots 5`
`=>2n+1+5 vdots 5`
`=>2n+6 vdots 5`
`=>2(n+3) vdots 5`
`=>n+3 vdots 5`
`=>n = 5k-3`
`=> n ne 5k-3`
Vậy để phân số trên tối giản thì ` n ne 5k-3`
Cho các hàm số sau : y = 2x + 1 và y = x - 3
a) Vẽ đồ thị của các hàm số trên cùng một mặt phẳng tọa độ
b) Gọi M là giao điểm của hai đồ thị trên . Tìm tọa độ điểm M
Lời giải:
a.
Đồ thị xanh lá: $y=2x+1$
Đồ thị xanh dương: $y=x-3$
b.
PT hoành độ giao điểm:
$y=2x+1=x-3$
$\Leftrightarrow x=-4$
$y=x-3=(-4)-3=-7$
Vậy tọa độ điểm $M$ là $(-4;-7)$
Vẽ đồ thị hai hàm số y=-x+5 và y=2x-2 trên cùng 1 mặt phẳng tọa độ
Tìm tọa độ giao điểm của 2 đồ thị trên
Phương trình hoành độ giao điểm:
\(-x+5=2x-2\Leftrightarrow x=\dfrac{7}{3}\Rightarrow y=\dfrac{8}{3}\Rightarrow\left(\dfrac{7}{3};\dfrac{8}{3}\right)\)
\(a,\) Hàm số: \(y=-x+5\)
Lấy: \(\left\{{}\begin{matrix}x=1\Rightarrow y=4\\x=2\Rightarrow y=3\end{matrix}\right.\)
Hàm số: \(y=2x-2\)
\(\left\{{}\begin{matrix}x=2\Rightarrow y=2\\x=3\Rightarrow y=4\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}y=-x+5\left(d\right)\\y=2x-2\left(d'\right)\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(\left(d\right)\) và \(\left(d'\right)\) là:
\(-x+5=2x-2\)
\(\Leftrightarrow-3x=-7\)
\(\Leftrightarrow x=\dfrac{7}{3}\)
Thay \(x=\dfrac{7}{3}\) vào \(\left(d\right)y=-x+5\) ta được:
\(y=-\dfrac{7}{3}+5\)
\(\Leftrightarrow y=\dfrac{8}{3}\)
Vậy tọa độ giao điểm của hai đường thẳng là \(B\left(\dfrac{7}{3};\dfrac{8}{3}\right)\)
1) Trên cùng 1 mặt phẳng tọa độ hãy vẽ đồ thị các hàm số sau ; y=3x và y=x+2 2) tìm tọa độ giao điểm của đồ thị 3 hàm số vừa vẽ ở câu 1
2. PT hoành độ giao điểm: \(3x=x+2\Leftrightarrow2x=2\Leftrightarrow x=1\Leftrightarrow y=3\Leftrightarrow A\left(1;3\right)\)
Vậy \(A\left(1;3\right)\) là giao 2 đths
cho hàm số y=-2x+1a)Xác định tọa độ giao điểm của đồ thị hàm số trên và Ox,Oy
b)CMR:f(x1)+f(x2)=f(x1+x2)+1
c)Tìm tọa độ giao điểm của đồ thị hàm số trên và đồ thị hàm số y=|x|
a) Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Ox là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-2x+1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=-1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Oy là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Cho hàm số y = ax2a) Xác định a để đồ thị của hàm số trên đi qua điểm A (4 ; 4).
b) Vẽ đồ thị của hàm số trên với a vừa tìm được và đồ thị của hàm số y = \(-\dfrac{1}{2}x\) trên cùng một mặt phẳng tọa độ Oxy.
c) Tìm tọa độ giao điểm của hai hàm số trên (câu b) bằng phép toán.
a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì
Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot4^2=4\)
\(\Leftrightarrow a\cdot16=4\)
hay \(a=\dfrac{1}{4}\)
a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)
\(\Rightarrow a=\dfrac{1}{4}\)
b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)
- Ta có đồ thì của hai hàm số :
c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)
Cho hàm số \(y=\dfrac{1}{2}x^2\) có đồ thị thì (P) và đường thẳng (d) có phương trình: \(y=x+1\)
a, Vẽ đồ thị hai hàm số trên cùng một mặt phẳng tọa độ Oxy
b, Tìm tọa độ giao điểm của 2 hàm số trên.