Đáp án B.
PT hoành đồ giao điểm là:
2 x + 1 x − 1 = 3 ⇔ x ≠ 1 2 x + 1 = 3 x − 3 ⇔ x = 4.
Vậy giao điểm của 2 đồ thị là 4 ; 3 .
Đáp án B.
PT hoành đồ giao điểm là:
2 x + 1 x − 1 = 3 ⇔ x ≠ 1 2 x + 1 = 3 x − 3 ⇔ x = 4.
Vậy giao điểm của 2 đồ thị là 4 ; 3 .
Tìm tất cả các giá trị của m để đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A ( 0 ; 4 ) và C sao cho diện tích ∆ M B C bằng 4, với M(1;3)
A. m = 2 m = 3
B. m = - 2 m = 3
C. m = 3
D. m = - 3 m = - 2
Đường thẳng d : y = x + 4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4) B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3) Tìm tất cả các giá trị của m thỏa mãn yêu cầu bài toán
A. m=2 hoặc m=3
B. m=-2 hoặc m=3
C. m=3
D. m=-2 hoặc m=-3
Cho hàm số y = x − 2 x − 3 có đồ thị (C). Tìm m để đường thẳng d đi qua A ( 0 ; m ) có hệ góc bằng 2 cắt (C) tại 2 điểm phân biệt có hoành độ dương
A. m ∈ ℝ .
B. 2 3 < m < 7 .
C. m < 2 3 .
D. m > 7 .
Cho đồ thị (C) của hàm số y = x 2 - 3 x + 3 - x + 1 . Tìm điểm M trên đồ thị (C) sao cho M cách đều hai trục tọa độ
A. M 1 2 ; 2
B. M 3 2 ; - 3 2
C. M - 3 2 ; 3 2
D. M 3 2 ; 2
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C), đường thẳng d : y = m x + 1 với m là tham số, đường thẳng △ : y = 2 x - 7 . Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(-1;0); B;C sao cho B,C cùng phía với ∆ và d B ; ∆ + d C ; ∆ = 6 5
A. 0
B. 8
C. 5
D. 4
Đường thẳng d: y=x+4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4), B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3). Mệnh đề nào sau đây là đúng?
A. m ∈ - ∞ ; 0
B. m ∈ 0 ; 2
C. m ∈ 2 ; 4
D. m ∈ 4 ; + ∞
Gọi M, N là các giao điểm của đường thẳng y = x − 4 với đồ thị của hàm số y = − 2 x + 5 x − 2 . Tìm tọa độ trung điểm I của MN?
A. I 2 ; − 2
B. I 1 ; − 3
C. I 3 ; − 1
D. I − 2 ; 2
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1
D. -3