BH

Những câu hỏi liên quan
HH
Xem chi tiết
TH
12 tháng 2 2022 lúc 13:29

\(x^2+3x+1\)

=\(\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{5}{4}\)

=\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\)

Ta có:\(\left(x+\dfrac{3}{2}\right)^2\ge0\) Với mọi x

 =>\(\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)

Dấu "=" xảy ra <=>\(\left(x+\dfrac{3}{2}\right)^2=0\)

                        <=>\(x+\dfrac{3}{2}=0\)

                        <=>\(x=\dfrac{-3}{2}\)

 

Bình luận (0)
VG
12 tháng 2 2022 lúc 13:27

min =1 

Bình luận (0)
NT
12 tháng 2 2022 lúc 13:28

\(\dfrac{x^2+3}{x+1}=\dfrac{x^2-1+4}{x+1}=x-1+\dfrac{4}{x+1}\)

\(=x+1+\dfrac{4}{x+1}-2\ge2\cdot\sqrt{4}-2=2\)

Dấu '=' xảy ra khi \(\left(x+1\right)^2=4\)

=>x+1=2 hoặc x+1=-2

=>x=1 hoặc x=-3

Bình luận (0)
LV
Xem chi tiết
TH
18 tháng 5 2022 lúc 17:38

\(x>0\)

\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)

-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có: 

\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)

-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{​​​​}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)

-Áp dụng BĐT AM-GM ta có:

\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)

\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)

-Vậy \(C_{min}=\dfrac{9}{8}\)

Bình luận (0)
NM
Xem chi tiết
LQ
Xem chi tiết
IM
28 tháng 8 2016 lúc 12:04

\(\left(2x+1\right)^2+\left(x-1\right)^2\)

\(=4x^2+4x+1+x^2-2x+1\)

\(=5x^2+2x+2\)

\(=\left(\sqrt{5}.x\right)^2+2.\sqrt{5}.x.\frac{\sqrt{5}}{5}+\left(\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)

\(=\left(\sqrt{5}x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\)

Ta có

\(\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{5}.x+\frac{\sqrt{5}}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)

Dấu " = " xảy ra khi \(\sqrt{5}.x+\frac{\sqrt{5}}{5}=0\Leftrightarrow x=-\frac{1}{5}\)

Vậy biểu thức đạt giá trị nhỏ nhất là \(\frac{9}{5}\) khi x=\(-\frac{1}{5}\)

Bình luận (0)
LQ
Xem chi tiết
MA
28 tháng 8 2016 lúc 11:37

\(A=\left(2x+1\right)^2+\left(x-1\right)^2\)

Có: \(\left(2x+1\right)^2+\left(x-1\right)^2\ge0\)

Dấu = xảy ra khi: \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}}\) ( k hợp lý => loại )

Ta xét: \(2x+1=0\Rightarrow A=\frac{1}{4}\)

\(x-1=0\Rightarrow A=16\)

Vì: \(\frac{1}{4}< 16\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_A=\frac{1}{4}\) tại \(x=-\frac{1}{2}\)

Bình luận (0)
MD
Xem chi tiết
H24

A = 2 + 3\(\sqrt[]{x^2+1}\) 

Ta có: x2 \(\ge\) 0, \(\forall\) x => x\(\ge\) 1, \(\forall\) x

=> \(\sqrt[]{x^2+1}\) \(\ge\) \(\sqrt[]{1}\) 

=> 3\(\sqrt[]{x^2+1}\) \(\ge\) 3

=> 2 + 3\(\sqrt[]{x^2+1}\) \(\ge\) 5

Vậy A đạt GTNN khi bằng 5

Dấu "=" xảy ra khi x = 0

Bình luận (0)
BB
Xem chi tiết
H24
1 tháng 3 2019 lúc 21:07

Có : \(P=\left|x^2-x+1\right|+\left|x^2-x+2\right|\)\(\ge\left|x^2-x+1-x^2+x-2\right|=\left|-1\right|=1\)

Vậy Pmin=1\(\Leftrightarrow\left(x^2-x+1\right)\left(-x^2+x-2\right)\ge0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x+1\ge0\\x^2-x+2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x+1\le0\\x^2-x+2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in R\\x\in\varnothing\end{matrix}\right.\\\left\{{}\begin{matrix}x\in\varnothing\\x\in R\end{matrix}\right.\end{matrix}\right.\)

Vậy không tồn tại GTNN của P.

Bình luận (0)
NL
3 tháng 3 2019 lúc 0:41

\(P=\left|x^2-x+1\right|+\left|x^2-x+2\right|\)

\(P=\left|x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right|+\left|x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{7}{4}\right|\)

\(P=\left|\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right|+\left|\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right|\)

\(P=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{10}{4}\ge\dfrac{10}{4}=\dfrac{5}{2}\)

\(\Rightarrow P_{min}=\dfrac{5}{2}\) khi \(x=\dfrac{1}{2}\)

Bình luận (0)
LD
Xem chi tiết
HT
Xem chi tiết
HM
27 tháng 6 2018 lúc 10:17

Bạn dung tổ hợp phím Shifl+\ (phím \ dưới phím Backspace) để ghi dấu giá trị tuyệt đối |||||||||||||||||||||||||| thấy ko???

Dấu \(\forall x\)tức là với mọi giá trị của x

a) Ta có: \(\left|x-1\right|\ge0,\forall x\)

         \(\Rightarrow\left|x-1\right|+2\ge2,\forall x\)

        Hay \(A\text{​​}\ge2\)

Dấu = xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy, A có GTNN là 2 khi x=1 

b) Ta có: \(\left|x+1\right|\ge0,\forall x\)

    \(\Rightarrow-\left|x-1\right|\le0,\forall x\)

     \(\Rightarrow2-\left|x-1\right|\le2,\forall x\)

        Hay \(B\text{ }\le2\)

Dấu = xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy, B có GTLN là 2 khi x=-1

Bình luận (0)
KS
27 tháng 6 2018 lúc 10:20

\(A=\left|x-1\right|+2\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+2\ge2\forall x\)

\(A=2\Leftrightarrow\left|x-1\right|=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

.Vậy \(A_{min}=2\Leftrightarrow x=1\)

\(B=2-\left|x+1\right|\)

Ta có: \(\left|x+1\right|\ge0\forall x\)

\(\Rightarrow2-\left|x+1\right|\le2\forall x\)

\(B=2\Leftrightarrow\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy \(B_{min}=2\Leftrightarrow x=-1\)

Bình luận (0)