Những câu hỏi liên quan
MN
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 9 2019 lúc 16:25

Khi a = 1, ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ x + 1 2  + (x – 1)(1 – x) = 4

⇔ x 2  + 2x + 1 + x –  x 2  – 1 + x = 4

⇔ 4x = 4 ⇔ x = 1 (loại)

Vậy phương trình vô nghiệm.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 2 2019 lúc 11:47

Khi a = - 3, ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ (3 – x)(x – 3) + x + 3 2  = -24

⇔ 3x – 9 – x 2  + 3x +  x 2  + 6x + 9 = -24 ⇔ 12x = - 24

⇔ x = -2 (thỏa mãn)

Vậy phương trình có nghiệm x = -2

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 2 2019 lúc 7:56

Khi a = 0, ta có phương trình:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phương trình nghiệm đúng với mọi giá trị của x ≠ 0

Vậy phương trình có nghiệm x ∈ R / x  ≠  0.

Bình luận (0)
NK
Xem chi tiết
NH
Xem chi tiết
KN
8 tháng 2 2020 lúc 18:19

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2020 lúc 18:22

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
LH
7 tháng 7 2021 lúc 17:53

Đk:\(a\ne\pm x\)

Pt \(\Leftrightarrow\dfrac{\left(a+x\right)^2-\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{2\left(a^2+x^2\right)}{a^2-x^2}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow2a^2+2x^2=3a^2+a\)

\(\Leftrightarrow a^2+a-2x^2=0\) (1)

Thay \(x=\dfrac{1}{2}\) vào (1) ta được:

\(a^2+a-2\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow a^2+a-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\a=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\) (tm)

Vậy...

Bình luận (0)
GB
Xem chi tiết
NL
8 tháng 5 2021 lúc 15:52

\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m

Bình luận (0)
DV
Xem chi tiết
NT
8 tháng 1 2022 lúc 21:52

a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn

Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn

c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Bình luận (0)