Những câu hỏi liên quan
TT
Xem chi tiết
NJ
Xem chi tiết
MN
Xem chi tiết
NL
1 tháng 4 2021 lúc 17:12

Đề bài sai

Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là: 

\(x^2-4x+y-6\sqrt{y}+13=0\)

Bình luận (0)
NL
1 tháng 4 2021 lúc 17:20

ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

Vậy có duy nhất cặp  số (x;y)=(2;9) thỏa mãn phương trình

Bình luận (1)
HP
1 tháng 4 2021 lúc 17:22

ĐK: \(y\ge0\)

\(x^2-4x+y-6\sqrt{y}+13=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(2;9\right)\) là nghiệm duy nhất của phương trình

Bình luận (0)
BB
Xem chi tiết
NL
10 tháng 1 2021 lúc 17:18

\(\left(m-1\right)x=2-3m\) (với \(m\ne1\))

\(\Rightarrow x=\dfrac{2-3m}{m-1}\)

\(x\ge1\Rightarrow\dfrac{2-3m}{m-1}\ge1\)

\(\Rightarrow\dfrac{2-3m}{m-1}-1\ge0\Rightarrow\dfrac{3-4m}{m-1}\ge0\)

\(\Rightarrow\dfrac{3}{4}\le m< 1\)

Bình luận (0)
BB
Xem chi tiết
TL
10 tháng 1 2021 lúc 14:06

\( (m-1)x+3m-2 =0 \\ \Leftrightarrow x= \dfrac{2-3m}{m-1} \\ \Rightarrow \) PT có nghiệm \(\Leftrightarrow m-1 \ne 0 \Leftrightarrow m \ne 1\)

\(x ≥ 1 \Leftrightarrow 2-3m ≥ m-1 \Leftrightarrow m ≤ \dfrac{3}{4}\)

Vậy \(m ≤ \dfrac{3}{4}\).

Bình luận (0)
VA
Xem chi tiết
BB
Xem chi tiết
NT
17 tháng 1 2021 lúc 21:36

a) Ta có: \(x^2+\dfrac{9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow\dfrac{\left(x^2+3x\right)^2+9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow x^4+6x^3+9x^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40\left(x^2+6x+9\right)\)

\(\Leftrightarrow x^4+6x^3+18x^2-40x^2-240x-360=0\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow x^4+2x^3+4x^3+8x^2-30x^2-60x-180x-360=0\)

\(\Leftrightarrow x^3\left(x+2\right)+4x^2\left(x+2\right)-30x\left(x+2\right)-180\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2-30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-6x^2+10x^2-60x+30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-6\right)+10x\left(x-6\right)+30\left(x-6\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(x-6\right)\left(x^2+10x+30\right)=0\)

mà \(x^2+10x+30>0\forall x\)

nên \(\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=6\end{matrix}\right.\)

Vậy: S={-2;6}

Bình luận (1)
NT
17 tháng 1 2021 lúc 22:05

b) Ta có: (m-1)x+3m-2=0

\(\Leftrightarrow\left(m-1\right)x=2-3m\)

\(\Leftrightarrow x=\dfrac{2-3m}{m-1}\)

Để phương trình có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{2-3m}{m-1}\ge1\)

\(\Leftrightarrow\dfrac{2-3m}{m-1}-1\ge0\)

\(\Leftrightarrow\dfrac{2-3m-\left(m-1\right)}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{-4m+3}{m-1}\ge0\)

hay \(\dfrac{3}{4}\le m< 1\)

Vậy: Để phương trình (m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{3}{4}\le m< 1\)

Bình luận (0)
BB
Xem chi tiết
TH
18 tháng 1 2021 lúc 12:29

PT có nghiệm duy nhất khi và chỉ khi m - 1 khác 0, tức m khác 1.

Khi đó \(x=\dfrac{2-3m}{m-1}\).

\(x\ge1\Leftrightarrow\dfrac{2-3m}{m-1}\ge1\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\Leftrightarrow\dfrac{3-4m}{m-1}\ge0\Leftrightarrow\dfrac{4}{3}\ge m>1\).

Vậy ....

Bình luận (0)
H24
Xem chi tiết
AH
20 tháng 1 2024 lúc 23:15

Lời giải:

a.

 

Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$

$\Leftrightarrow x+2m=7$

$\Leftrightarrow x=7-2m$

$y=2-x=2-(7-2m)=2m-5$

Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$

Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$

Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:

$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$

Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$

b.

$xy>0$

$\Leftrightarrow (7-2m)(2m-5)>0$

$\Leftrightarrow 7> 2m> 5$

$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$

Do $m$ nguyên nên $m=3$

Thử lại thấy đúng.

 

Bình luận (0)