Những câu hỏi liên quan
NC
Xem chi tiết
NL
21 tháng 12 2020 lúc 15:29

ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)

\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)

\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)

Bình luận (0)
ST
Xem chi tiết
H24
22 tháng 3 2019 lúc 21:30

kb nhé

Bình luận (0)
NA
8 tháng 5 2019 lúc 20:37

12345x331=...///???......................ai nhanh  mk tk cho

Bình luận (0)
NA
8 tháng 5 2019 lúc 20:41

mk ko biet dang  cau  hoi nen phai the thoi mong  cac ban thon  cam

Bình luận (0)
H24
Xem chi tiết
D2
Xem chi tiết
KS
1 tháng 3 2019 lúc 19:31

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

Bình luận (0)
KS
1 tháng 3 2019 lúc 20:18

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

Bình luận (0)
KS
2 tháng 3 2019 lúc 16:30

\(2x^3-9x^2+2x+1\)

\(=2x^3-x^2-8x^2+4x-2x+1\)

\(=x^2\left(2x-1\right)-4x\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x+4-5\right)\)

\(=\left(2x-1\right)\left[\left(x-2\right)^2-5\right]\)

.......

Bình luận (0)
HN
Xem chi tiết
AH
19 tháng 4 2021 lúc 17:23

Lời giải:

a) $f(x)=x^5-3x+3$ liên tục trên $R$

$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$

Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$

Nghĩa là pt đã cho luôn có nghiệm.

b) $f(x)=x^5+x-1$ liên tục trên $R$

$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$

Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$

Hay pt đã cho luôn có nghiệm.

c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$

$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$

$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$

Hay pt đã cho luôn có nghiệm.

Bình luận (0)
MA
Xem chi tiết
AH
13 tháng 8 2021 lúc 1:02

Lời giải:
$(P):y=x^2+bx+2$ đi qua $(3;-4)$ nên:

$-4=3^2+b.3+2\Rightarrow b=-5$

Vậy pt cần tìm là $y=x^2-5x+2$

Vậy thì trục đối xứng $x=\frac{-3}{2}$ có vẻ thừa?

Bình luận (0)
VL
Xem chi tiết
ON
Xem chi tiết
NT
22 tháng 5 2016 lúc 21:19

a) đenta=b^2-4c

2b+4c=-1=>c=-1-2b)/4

thay vô chứng minh nó lớn hơn 0

Bình luận (0)
NT
22 tháng 5 2016 lúc 21:24

x1+x2=b

x1x2=c

ta có x1=2x2

thay vô tìm x1;x2 theo b,c rồi thay vô 

mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b

x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c

Bình luận (0)
TL
Xem chi tiết
LH
3 tháng 6 2021 lúc 22:08

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

Bình luận (0)
VX
3 tháng 6 2021 lúc 22:16

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-

 

Bình luận (0)
NV
Xem chi tiết
KK
24 tháng 3 2017 lúc 22:43

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )

Bình luận (0)