Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

TL

biết rằng phương trình \(x^2+px+1=0\) có nghiệm là a,b và phương trình \(x^2+qx+2=0\) có nghiêm là b,c . Khi đó giá trị của biểu thức \(A=pq-\left(b-a\right)\left(b-c\right)\)bằng ?

LH
3 tháng 6 2021 lúc 22:08

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

Bình luận (0)
VX
3 tháng 6 2021 lúc 22:16

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-

 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
MI
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết
NL
Xem chi tiết
NQ
Xem chi tiết