Cho biểu thức:
P = 2 x 4 - 1 - 1 1 - x 2
a) Tìm điều kiện xác định của biểu thức P.
b) Chứng minh giá trị của P luôn âm với x ≠ ±1
Cho biểu thức P= x^4+x/x^2-x+1 +1 - 2x^2+3x+1/x+1
a). Rút gọn biểu thức P
b). Tính GTNN của P
(a) Điều kiện : \(x\ne-1.\)
Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)
\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)
\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)
\(=x\left(x+1\right)+1-2x-1\)
\(=x^2-x.\)
Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)
(b) Ta có : \(P=x^2-x\)
\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)
cho biểu thức p = (4/x-1-7x+5/x^3-1):(1-x-4/x^2+x+1) (với x khác 1) a) rút gọn biểu thức
Với \(x\ne1\)ta có
\(P=\left(\frac{4}{x-1}-\frac{7x+5}{x^3-1}\right):\left(1-\frac{x-4}{x^2+x+1}\right)\)
\(=\left[\frac{4x^2+4x+4-7x-5}{\left(x-1\right)\left(x^2+x+1\right)}\right]:\left(\frac{x^2+x+1-x-4}{x^2+x+1}\right)\)
\(=\frac{4x^2-3x-1}{\left(x-1\right)\left(x^2+x+1\right)}:\frac{x^2-3}{x^2+x+1}=\frac{4x+1}{x^2-3}\)
1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)
a.Rút gọn biểu thức A.
b. Tính giá trị của biểu thức A khi x=4.
2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1
3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2
4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)
a. Rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).
5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)
a. Rút gọn biểu thức M
b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)
MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
1,
\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)
\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)
2.
\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
3.
Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)
4.
\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)
\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)
5.
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
. cho biểu thức P=x-2/x^2-1-x+2/x^2+2x+1.(1-x^2/2)
a. Rút gọn biểu thức P
b. Tính giá trị của biểu thức biết ./x-1=2/
c. Tìm giá trị của để P-4/5=x./x-1=2/ là giá trị tuyệt đói í ạ
a) Ta có: \(P=\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\cdot\dfrac{1-x^2}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\cdot\dfrac{-\left(x-1\right)\left(x+1\right)}{2}\)
\(=\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+2\right)\left(x-1\right)}{2\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2\cdot\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^2-2x+1\right)\left(x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3+2x^2-2x^2-4x+x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-\left(x^3-3x+2\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-4-x^3+3x-2}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^3+5x-6}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x^3-5x+6\right)}{2\left(x-1\right)\left(x+1\right)}\)
Cho biểu thức P = (2/x+2 - 4/x^2+4x+4) : (2/x^2-4 + 1/2-x)
rút gọn biểu thức trên
cho biểu thức
P=\(\dfrac{2}{x^4-1}-\dfrac{1}{1-x^2}\)
a, tìm điều kiện của biểu thức P
b, chứng minh giá trị P luôn âm với x≠+-1
Lời giải:
a. ĐKXĐ: \(\left\{\begin{matrix}
x^4-1\neq 0\\
1-x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(1-x^2)(1+x^2)\neq 0\\
1-x^2\neq 0\end{matrix}\right.\)
\(\Leftrightarrow 1-x^2\neq 0\) (do \(1+x^2>0\) với mọi x)
\(\Leftrightarrow (1-x)(1+x)\neq 0\Leftrightarrow x\neq \pm 1\)
b.
\(P=\frac{2}{(x^2-1)(x^2+1)}+\frac{1}{x^2-1}=\frac{2}{(x^2-1)(x^2+1)}+\frac{x^2+1}{(x^2-1)(x^2+1)}=\frac{x^2+3}{(x^2-1)(x^2+1)}\)
$P$ vẫn nhận giá trị dương với $x=3,4,5,...$ nên bạn xem lại đề.
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Cho biểu thức: A=(x-2)(x+2)-(x-1)(x^2-2x+1)-x^2(4-x)
a.Rút gọn biểu thức.
b.Tìm giá trị của x để biểu thức A có giá trị bằng 0.
a) Đề phải là: \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2+2x+1\right)-x^2\left(4-x\right)\) chứ bạn
\(\Rightarrow A=x^2-2^2-\left(x^3-1\right)-4x^2+x^3\)
\(=x^2-4-x^3+1-4x^2+x^3\)
\(=-3x^2-3=-3\left(x^2+1\right)\)
b) A = 0 \(\Leftrightarrow-3\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Vì \(x^2\ge0\left(\forall x\right)\) \(\Rightarrow x\in\varnothing\)
Vậy x vô nghiệm nếu A có giá trị bằng 0
P/s: không chắc lắm
a) \(A=\left(x-2\right)\left(x+2\right)-\left(x-1\right)\left(x^2-2x+1\right)-x^2\left(4-x\right)\)
=> \(A=x^2-4-\left(x-1\right)^3-4x^2+x^3\)
=> \(A=x^2-4-x^3+3x^2-3x+1-4x^2+x^3\)
=> \(A=-3x-3\)
b) Cho A=0
=> \(A=-3x-3=0\)
=> \(-3x=3\)
=> \(x=-1\)
Cho biểu thức A= 1/x-2 + 1/x+2 + x²+1/x²-4 (với x khác +-2)
a) Rút gọn biểu thức
B) CMR với -2<x<2, x khác -1 thì phân thức có giá trị luôn âm
Cho biểu thức : \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) và \(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) với x ≥ 0; x ≠ 4; x ≠ 9
a, Tính giá trị biểu thức Q khi x = 64
b, Chứng minh P = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c, Cho biểu thức K = Q.(P-1). Tìm số tự nhiên m nhỏ nhất để phương trình K = m + 1 có nghiệm
a) Thay x=64 vào Q ta có:
\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)
b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)
cho biểu thức \(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a) rút gọn biểu thức
b) tìm giá trị nhỏ nhất của M
làm ơn giúp mình với