NH

Cho biểu thức P= x^4+x/x^2-x+1  +1 - 2x^2+3x+1/x+1
a). Rút gọn biểu thức P
b). Tính GTNN của P

TM
6 tháng 6 2023 lúc 9:58

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MM
Xem chi tiết
DN
Xem chi tiết
TQ
Xem chi tiết
HC
Xem chi tiết
PH
Xem chi tiết
KS
Xem chi tiết
MR
Xem chi tiết
NH
Xem chi tiết