HM

Cho biểu thức : \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) và \(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)  với x ≥ 0; x ≠ 4; x ≠ 9

a, Tính giá trị biểu thức Q khi x = 64

b, Chứng minh P = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

c, Cho biểu thức K = Q.(P-1). Tìm số tự nhiên m nhỏ nhất để phương trình K = m + 1 có nghiệm 

H9
5 tháng 8 2023 lúc 9:33

a) Thay x=64 vào Q ta có:

\(Q=\dfrac{\sqrt{64}-2}{\sqrt{64}-3}=\dfrac{8-2}{8-3}=\dfrac{6}{5}\)

b) \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

\(P=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-2}\left(dpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HN
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
LD
Xem chi tiết
LT
Xem chi tiết
NA
Xem chi tiết