Cho hai hàm số y = m + 1 x 2 + 3 m 2 x + m và y = m + 1 x 2 + 12 x + 2 . Tìm tất cả các giá trị của tham số m để đồ thị hai hàm số đã cho không cắt nhau.
A. m = 2.
B. m = −2.
C. m = ±2.
D. m = 1.
Câu 1. Với giá trị nào của m thì đồ thị hai hàm số y=2x+3 và y= (m-1)x+3 là hai đường thẳng trùng nhau
A. m=-1 B. m=2 C. m=\(\dfrac{-1}{2}\) D. m= 3
Câu 2 Cho hàm số \(y=-mx+2\) . Giá trị của m để đồ thị hàm số trên cắt đường thẳng y=x+3 tại điểm có hoành độ bằng 1 là
A. m= -2 B. m = 4 C. m= -3 D. m = 4
a) Để đồ thị 2 hàm số đã cho cắt nhau thì:
\(m-1\ne3-m\Leftrightarrow m\ne2\)
Vậy khi m\(\ne\)2 thì đồ thị của hai hàm số đã cho cắt nhau
b) Khi m=0 ta đc hàm số y = -x+2 và y=3x -2
* hàm số y=-x +2, cho x =0 thì y=2 => A(0;2)
, cho y=0 thì x=2 => B(2;0)
*Hàm số y =3x-2, cho x=0 thì y= -2 => C(0;-2)
cho y=0 thì x=2/3 => D(2/3; 0)
Cho hai hàm số y = (m - 1)x + 3 và y = (3 - m)x + 1, Với giá trị nào của m thì đồ thị của hai hàm só là hai đường thẳng song song với nhaub, Với giá trị nào của m thì đồ thị của 2 hàm số là hai đường thẳng cắt nhau
a: Để hai đường thẳng song song thì m-1=3-m
=>2m=4
hay m=2
\(\text{//}\Leftrightarrow m-1=3-m\Leftrightarrow m=2\\ \cap\Leftrightarrow m-1\ne3-m\Leftrightarrow m\ne2\)
Cho hàm số y=\(x^2\) và y=x+m (m là tham số)
1)Tìm m để đồ thị hai hàm số cắt nhau tại 2 điểm phân biệt A, B.
2)Tìm m để AB=3\(\sqrt{2}\)
1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)
\(\Leftrightarrow x^2-x-m=0\) ( I )
Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)
- Để 2 hàm số cắt nhau tại hai điểm phân biệt
<=> PT ( I ) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow m>-\dfrac{1}{4}\)
2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)
Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)
TH1 : \(x_1-x_2=3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
TH2 : \(x_1-x_2=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
\(\Rightarrow-m=-2\)
\(\Rightarrow m=2\)
Vậy m = 2 thỏa mãn yêu cầu đề bài .
Cho hai hàm số bậc nhất: \(\left(m-\dfrac{2}{3}\right)x+3\) và y = ( 2 – m). x + n – 1. Đồ thị của các hàm số đó là hai đường thẳng song song khi: m = …… và n = …
2 đồ thị song song \(\Leftrightarrow\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\3\ne n-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{4}{3}\\n\ne4\end{matrix}\right.\)
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1
Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2-x+m+1\). Tìm m để hàm số có CĐ, CT sao cho khoảng cách giữa hai điểm CĐ, CT nhỏ nhất
1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
1.
\(f'\left(x\right)=3x^2-6mx+3\left(2m-1\right)\)
\(f'\left(x\right)-6x=3x^2-3.2\left(m+1\right)x+3\left(2m-1\right)>0\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m-1>0\)
\(\Leftrightarrow x^2-2x-1>2m\left(x-1\right)\)
Do \(x>2\Rightarrow x-1>0\) nên BPT tương đương:
\(\dfrac{x^2-2x-1}{x-1}>2m\Leftrightarrow\dfrac{\left(x-1\right)^2-2}{x-1}>2m\)
Đặt \(t=x-1>1\Rightarrow\dfrac{t^2-2}{t}>2m\Leftrightarrow f\left(t\right)=t-\dfrac{2}{t}>2m\)
Xét hàm \(f\left(t\right)\) với \(t>1\) : \(f'\left(t\right)=1+\dfrac{2}{t^2}>0\) ; \(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)>f\left(1\right)=-1\Rightarrow\) BPT đúng với mọi \(t>1\) khi \(2m< -1\Rightarrow m< -\dfrac{1}{2}\)
2.
Thay \(x=0\) vào giả thiết:
\(f^3\left(2\right)-2f^2\left(2\right)=0\Leftrightarrow f^2\left(2\right)\left[f\left(2\right)-2\right]=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)
Đạo hàm 2 vế giả thiết:
\(-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\) (1)
Thế \(x=0\) vào (1) ta được:
\(-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)
\(\Leftrightarrow f^2\left(2\right).f'\left(2\right)+4f\left(2\right).f'\left(2\right)-12=0\) (2)
Với \(f\left(2\right)=0\) thế vào (2) \(\Rightarrow-12=0\) ko thỏa mãn (loại)
\(\Rightarrow f\left(2\right)=2\)
Thế vào (2):
\(4f'\left(2\right)+8f'\left(2\right)-12=0\Leftrightarrow f'\left(2\right)=1\)
\(\Rightarrow A=3.2+4.1\)
3.
Đặt \(g\left(x\right)=f\left(x\right)-f\left(2x\right)\)
\(\Rightarrow g'\left(x\right)=f'\left(x\right)-2f'\left(2x\right)\)
Thay \(x=1\Rightarrow18=f'\left(1\right)-2f'\left(2\right)\) (1)
Thay \(x=2\Rightarrow2000=f'\left(2\right)-2f'\left(4\right)\Rightarrow4000=2f'\left(2\right)-4f'\left(4\right)\) (2)
Cộng vế (1) và (2):
\(f'\left(1\right)-4f'\left(4\right)=4018\)
Đặt \(h\left(x\right)=f\left(x\right)-f\left(4x\right)\Rightarrow h'\left(x\right)=f'\left(x\right)-4f'\left(4x\right)\)
Thay \(x=1\Rightarrow h'\left(1\right)=f'\left(1\right)-4f'\left(4\right)=4018\)
Bài 1: Tìm a để đường thẳng y = ax + 4 song song với đường thẳng y = −3x−1.
Bài 2: Cho hai hàm số bậc nhất y = 2mx + 1 và y = (m−1)x + 3. Tìm các giá trị của m để đồ thị của chúng là hai đường thẳng song song.
Bài 3: Cho hai hàm số bậc nhất y = x + 3 và y = mx − 1. Tìm m để đồ thị của chúng cắt nhau tại điểm có hoành độ bằng 1.
Bài 4: Cho 2 hàm số bậc nhất y = 3x – 1 và y = 2mx + 1. Tìm m để đồ thị của chúng cắt nhau tại điểm có tung độ bằng 2.
Bài 5 : Cho hàm số y = ax + 2 . Tìm hệ số góc a biết đồ thị của hàm số đi qua điểm A(2; 4) . Vẽ
\(1,\Leftrightarrow\left\{{}\begin{matrix}a=-3\\4\ne-1\end{matrix}\right.\Leftrightarrow a=-3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2m=m-1\\1\ne3\end{matrix}\right.\left(m\ne0;m\ne1\right)\Leftrightarrow m=-1\\ 3,\)
PTHDGD: \(x+3=mx-1\)
Mà chúng cắt tại hoành độ 1 nên \(x=1\Leftrightarrow m-1=4\Leftrightarrow m=5\)
\(5,A\left(2;4\right)\inđths\Leftrightarrow2a+2=4\Leftrightarrow a=1\Leftrightarrow y=x+2\)
PT giao Ox: \(x+2=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)
PT giao Oy: \(y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)
Vì \(OA=OB\) nên OAB vuông cân
Vậy góc tạo bởi đths là 450
1. Cho hai hàm số bậc nhất y=mx+3 và y=(2m+1)x – 1.
Để đồ thị của hai hàm số đã cho là hai đường thẳng song song với nhau thì m = …
2. Cho hàm số y = ax+3. Để đồ thị hàm số song song với đường thẳng y = -5x thì a = …
\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)