Xác định m để phương trình \(\sqrt{x^2+1}-\sqrt{x^2+16}+m+2\) = 0 có nghiệm duy nhất
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Định giá trị của m để phương trình: \(x-\sqrt{1-x^2}=m\) có nghiệm duy nhất
\(\Leftrightarrow\left(x-m\right)^2=1-x^2\)
\(\Leftrightarrow2x^2-2mx+m^2-1=0\)
có \(\Delta'=m^2-2\left(m^2-1\right)=2-m^2\)
phương trình có nghiệm duy nhất khi \(\Delta'=0\)<=> 2-m^2=0 <=> m \(\in\left\{\sqrt{2},-\sqrt{2}\right\}\)
vậy...
ĐK: \(-1\le m\le1.\)
\(pt\Leftrightarrow x-m=\sqrt{1-x^2}\) (ĐK: \(x\ge m\))
\(\Rightarrow\left(x-m\right)^2=1-x^2\Rightarrow2x^2-2mx+m^2-1=0\)
Để pt có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow m^2-2\left(m^2-1\right)=0\Leftrightarrow m=\sqrt{2}\) hoặc \(m=-\sqrt{2}.\)
Với \(m=\sqrt{2};pt\Rightarrow2x^2-2\sqrt{2}x+1=0\Rightarrow x=\frac{1}{\sqrt{2}}>\sqrt{2}\) (Vô lý)
Với \(m=-\sqrt{2};pt\Rightarrow2x^2+2\sqrt{2}x+1=0\Rightarrow x=\frac{-1}{\sqrt{2}}>-\sqrt{2}\)
Vậy \(m=-\sqrt{2}\)
Định giá trị của m để phương trình: \(x-\sqrt{1-x^2=m}\) có nghiệm duy nhất
Tìm m để phương trình \(x^2-2x+2\left(x-\sqrt{2x+m}\right)\left(\sqrt{x}+1\right)-m=0\) có nghiệm duy nhất trên đoạn [0;3].
(chỉ cần gợi ý cách biến đổi ra pt bậc 2 là đc)
\(\Leftrightarrow x^2-2x-m+\dfrac{2\left(x^2-2x-m\right)\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}=0\)
\(\Leftrightarrow\left(x^2-2x-m\right)\left(1+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}\right)=0\)
\(\Leftrightarrow x^2-2x-m=0\)
1) \(2x-x^2-\sqrt{6x^2-12x+7}=0\)
2) cho phương trình x2 - 2(m+1)x+m2+3=0 .Xác định m để phương trình có 2 nghiệm phân biệt x1 ,x2 thoả \(x_1^2+x_2^2=2x_1x_2+8\)
1.
\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)
Đặt \(\sqrt{6x^2-12x+7}=t>0\)
\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)
2.
\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)
\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)
\(\Leftrightarrow2m-4=0\Rightarrow m=2\)
cho phương trình: \(m\sqrt{2x}-\left(\sqrt{2}-1\right)^2=\sqrt{2}-x+m^2\)
a/Tìm m để phương trình có nghiệm dương duy nhất
b/tìm m để phương trình có nghiệm \(x=3-\sqrt{2}\)
cho hệ phương trình \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
Xác định m để hệ phương trình có nghiệm duy nhất (x;y) và điểm M(x;y) thuộc đường tròn có tâm là gốc tọa độ và bán kính =\(\sqrt{5}\)
Cho phương trình : \(\sqrt{x+4\sqrt{x-4}}+x+2+\sqrt{x-4}=m+2\)
a, Giải phương trình khi m=4
b, Xác định m để phương trình có nghiệm
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)