cho a>=b>=c và x<=y<=z.cm (a+b+c)(x+y+z)>=3(ax+by+cz)
1 ) Tìm các số x , y , z biết :
a ) x / -2 = y / 3 = z / -5 và x - y + z = 20
b ) x / 10 = y / 6 = z / 21 và 5x + y - 2z = 28
c ) x / 3 = y / 4 ; 5y = 3z và 2x - 3y + z = 6
d ) x / 2 = y / 3 = z / 5 và x , y , z = 810
2 ) Cho a / b = b / c = c / a
Chứng minh rằng : a = b = c
3 ) Cho x = a / b + c = b / c + a = c / a + b với a + b + c khác 0 . Tính x ?
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha
Làm giúp mk nha
1.2x=3y;5y=7z;3x+5y-7z=30
Câu 1 : Cho hai đa thức:
A(x)=6x-4x³ +x-1 và B(x)=-3x-2x³-5x2+x+2. Tính A(x)+B(x) và A(x)−B(x)
Câu 2 : Cho: A = x’yz ; B = xyz ; C = xyz và x+y+z=1 Hãy chứng tỏ: A+B+C =xyz
Câu 1:
\(A\left(x\right)+B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)
\(=-6x^3-5x^2+4x+1\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)
\(=-2x^3+5x^2+6x-3\)
cho a = 5 và b - c = 20 và A = b x (a - c) - c x (a - b) ; tim A =
b(a-c)-c(a-b)
=ab-bc-ac+bc
=ab-ac=a.(b-c)=5.20=100
Vậy A=100
Cho a,b,c và x,y,z khác 0 và a+b+c=0 ; x+y+z=0 ,x/a + y/b + z/c =0. CMR : a^2 . x + b^2 . y + c^2 . z
Cho \(abc\ne0\) và \(a+b+c\ne0\). Tìm \(x\), biết: \(\dfrac{a+b-x}{c}+\dfrac{a+c-x}{b}+\dfrac{b+c-x}{a}+\dfrac{4x}{a+b+c}=1\)
Lời giải:
PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$
$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$
$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$
$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$
$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$
Cho các số nguyên a ,b , c và a+b+c chia hết cho 4. Chứng minh 3 x a x b x c chia hết cho 6
Cho hai đa thức: A(x) = 4x4 + 6x2 - 7x3 - 5x - 6 và B(x) = -5x2 + 7x3 + 5x + 4 - 4x4.
a) Tìm đa thức M(x) sao cho M(x) = A(x) + B(x).
b) Tìm đa thức C(x) sao cho A(x) = B(x) + C(x).
c) M(1) , C(1)
a: M(x)=A(x)+B(x)
=4x^4-7x^3+6x^2-5x-6-4x^4+7x^3-5x^2+5x+4
=x^2-2
b: C(x)=A(x)-B(x)
=4x^4-7x^3+6x^2-5x-6+4x^4-7x^3+5x^2-5x-4
=8x^4-14x^3+11x^2-10x-10
c: M(1)=1^2-2=-1
C(1)=8-14+11-10-10=5-20=-15
`a,`
\(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(4x^4+6x^2-7x^3-5x-6\right)+\)`(-5x^2+7x^3+5x+4-4x^4)`
`M(x)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4`
`=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)`
`=x^2-2`
`b,`
`A(x)=B(x)+C(x)`
`-> C(x)=A(x)-B(x)`
`-> C(x)=(4x^4 + 6x^2 - 7x^3 - 5x - 6)-(-5x^2+7x^3+5x+4-4x^4)`
`C(x)=4x^4 + 6x^2 - 7x^3 - 5x - 6+5x^2-7x^3-5x-4+4x^4`
`= (4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)`
`= 8x^4-14x^3+11x^2-10x-10`
`c,`
`M(1)=1^2-2=1-2=-1`
`C(1)=8*1^4-14*1^3+11*1^2-10*1-10`
`=8-14+11-10-10=-6+11-10-10=5-10-10=-5-10=-15`
1 cho a^2+b^2=c^2+d^2=2015^2015 và ad+bc=0. Tính ab+cd
2 cho x^100+y^1000=a và x^2000+y^2000=2b/3 và x^5000+y^5000=c/36. Tìm hệ thức giữa a,b,c sao cho hk phụ thuộc vào x,y
3 tính tổng của các số nguyên x biết x chia hết cho 2x^3+1
4 phân tích thành nhân tử (a-b)^5+(b-c)^5+(c-a)^5 với a,b,c đôi một khác nhau
1. Cho ba số dương phân biệt a,b,c sao cho b/a-c=a+b/c=a/b 2. Tìm x,y biết x+y/6=x-3y/4 và x^2*y^2=121
1. Cho a+b+c=a^2+b^2+c^2=1 và a/x=b/y=c/z
Cm: xy+yz+zx=0
2.Cho x/a+y/b+z/c=1 và a/x^2+b/y^2+c/z^2=0
Tính: A=x^2/a^2+y^2/b^2+z^2/c^2
3.Tìm a,b biết:(a-1)^2+(b-1)^2=10a+b
và 0<a<10; -1<b<10
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0