Cho x=by+cz; y=ax+cz; z=ax+by. CMR: x+y+z=8xyz(a+1)(b+1)(c+1)
cho x,y,z khác 0 và a,b,c >0 thỏa mãn:
ax+by+cz=0;và a+b+c=2017
tính giá trị biểu thức:
P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Cho các số dương a,b,c,x,y,z thỏa mãn a+b+c=x+y+z. Chứng minh rằng: ax(a+x)+by(b+y)+cz(c+z)\(\ge\)3(abc+xyz)
cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cx=0 và a+b+b=2007.
Tính :\(P=\frac{ax^2+by^2+cz^2}{bc\left(y-x\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
cho \(ax^3=by^3=cz^3;\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). chứng minh \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
cho ax+by+cz=0,a+b+c=2015. tính Q=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2}\)
Cho \(x=by+cz,y=ax+cz,z=ax+by\) và \(x+y+z\ne0\)
Tính giá trị biểu thức: \(B=\sqrt{\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}}\)
Cho ax+by+cz=0 và a+b+c=1/2016. Chưng minh :( ax2+by2+cz2) / [bc(y-z)2+ac(x-z)2+ab(x-y)2 ] =2016