H24

Cho \(abc\ne0\) và \(a+b+c\ne0\). Tìm \(x\), biết: \(\dfrac{a+b-x}{c}+\dfrac{a+c-x}{b}+\dfrac{b+c-x}{a}+\dfrac{4x}{a+b+c}=1\)

AH
27 tháng 8 2023 lúc 21:43

Lời giải:

PT $\Leftrightarrow \frac{a+b-x}{c}+1+\frac{a+c-x}{b}+1+\frac{b+c-x}{a}+1+\frac{4x}{a+b+c}-4=0$

$\Leftrightarrow \frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4(a+b+c-x)}{a+b+c}=0$

$\Leftrightarrow (a+b+c-x)(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c})=0$

$\Rightarrow a+b+c-x=0$ hoặc $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$
Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0$, khi đó $x$ nhận mọi giá trị thực.

Nếu $\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\neq 0$

$\Rightarrow a+b+c-x=0$
$\Rightarrow x=a+b+c$

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
BK
Xem chi tiết
BK
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết