tim GTNN cua bieu thuc :
\(x^2-4\sqrt{x}-7\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tim GTNN cua bieu thuc:
\(A=\dfrac{1}{2}\sqrt{x^2}+\sqrt{x^2-2x+1}\)
2. Rut gon bieu thuc:
a) \(A=\sqrt{29-4\sqrt{7}}+\sqrt{23+8\sqrt{7}}\)
b)\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}},voix>=2\)
Bài 2:
a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)
\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)
b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
TIM GTNN cua bieu thuc
2x-\(3\sqrt{x}\)+4
\(=2x-\frac{2.3}{2\sqrt{2}}.\sqrt{2x}+\frac{9}{8}+\frac{23}{8}\)
\(=\left(\sqrt{2x}-\frac{3\sqrt{2}}{2}\right)^2+\frac{23}{8}\ge\frac{23}{8}\)
=> GTNN của BT là 23/8
1) Cho bieu thuc: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
a) Cho bieu thuc A= \(\frac{\sqrt{x}+4}{\sqrt{x}+2}\) ; voi cac cua bieu thuc A va B da cho, hay tim cac gia tri cua x nguyen de gia tri cua bieu thuc B(A;-1) la so nguyen
Tim GTNN cua bieu thuc A=|x-7|+6-x
tim GTNN cua bieu thuc N=\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)
\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
\(M=2a^2+a-4=2a^2+3a-2a-3-1\)
\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)
\(M=\left(a-1\right)\left(2a+3\right)-1\)
Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)
\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)
cho bieu thuc
P=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{2}\)với x>=0,x≠4
a. tim gia tri cua P khi x=64
b. rút gọn bieu thuc p
c. tim cac gia tri cua x de bieu thuc 2P nhan gia tri nguyen
b \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
cho bieu thuc
P=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{2}\)với x>=0,x≠4
a. tim gia tri cua P khi x=64
b. rút gọn bieu thuc p
c. tim cac gia tri cua x de bieu thuc 2P nhan gia tri nguyen
b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)
\(\frac{2017-2015x}{\sqrt{1-x^2}}\)
tim GTNN cua bieu thuc tren
cho bieu thuc A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri cua bieu thuc A tai x=7+4√3
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)