Chứng minh đẳng thức sau :
\(\frac{6+2cos4a}{1-cos4a}=tan^2a+cot^2a\)
Chứng Minh
\(tan^2a+cot^2a=\dfrac{2\left(3+cos4a\right)}{1-cos4a}\)
\(tan^2a+cot^2a=\dfrac{sin^2a}{cos^2a}+\dfrac{cos^2a}{sin^2a}=\dfrac{sin^4a+cos^4a}{\left(sina.cosa\right)^2}=\dfrac{\left(sin^2a+cos^2a\right)^2-2\left(sina.cosa\right)^2}{\left(\dfrac{1}{2}.2sina.cosa\right)^2}\)
\(=\dfrac{1-\dfrac{1}{2}sin^22a}{\dfrac{1}{4}sin^22a}=\dfrac{8-4sin^22a}{2sin^22a}=\dfrac{8-2\left(1-cos4a\right)}{1-cos4a}=\dfrac{6+2cos4a}{1-cos4a}\)
Cho \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\).
Tính cos4a
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
=>\(\dfrac{sin^2a+1}{cos^2a}+\dfrac{cos^2a+1}{sin^2a}=7\)
=>\(\dfrac{sin^4a+sin^2a+cos^4a+cos^2a}{sin^2a\cdot cos^2a}=7\)
=>\(sin^4a+cos^4a+1=7\cdot sin^2a\cdot cos^2a\)
=>\(\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+1=7\cdot sin^2a\cdot cos^2a\)
=>\(2=9\cdot sin^2a\cdot cos^2a\)
=>\(8=9\cdot sin^22a\)
=>16=9(1-cos4a)
=>1-cos4a=16/9
=>cos4a=-7/9
chứng minh
a) \(\frac{sin^2a+2cos^2a-1}{cot^2a}=sin^2a\)
b) \(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=tan^2a\)
c) \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=tan^6a\)
Lời giải:
a)
\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)
b)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)
c)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)
\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
Chứng minh rằng: cot2a + tan2a= \(\frac{2\cos4a+6}{1-\cos4a}\)
\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)
\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)
\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)
Chứng minh
\(\frac{tan^3a}{sin^2a}-\frac{1}{sinacosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
Lời giải:
Ta có:
\(\frac{\tan ^3a}{\sin ^2a}-\frac{1}{\sin a\cos a}+\frac{\cot ^3a}{\cos ^2a}=\frac{\tan ^3a\cos ^2a+\cot ^3a\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos ^3a}.\cos ^2a+\frac{\cos ^3a}{\sin ^3a}.\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)
\(=\frac{\frac{\sin ^3a}{\cos a}+\frac{\cos ^3a}{\sin a}-\sin a\cos a}{\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a}{\sin ^3a\cos ^3a}\)
\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a)}{\sin ^3a\cos ^3a}\)
\(=\frac{\sin ^6a+\cos ^6a}{\sin ^3a\cos ^3a}=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}=\tan ^3a+\cot ^3a\)
Ta có đpcm.
Chứng minh đẳng thức sau :
Các bạn giải gấp cho mình câu này nha . Mình đang cần rất rất gấp bạn nào giải đúng mình tick cho
\(\frac{cot^2a-cos^2a}{cot^2a}+\frac{sina.cosa}{cota}=1\)
Lời giải:
Ta có:
\(\frac{\cot ^2a-\cos ^2}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}=1-\frac{\cos ^2a}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}\)
\(=1-\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}+\frac{\sin a\cos a}{\frac{\cos a}{\sin a}}=1-\sin ^2a+\sin ^2a=1\)
Ta có đpcm.
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
\(\frac{cot^2a-cos^2a}{cot^2a}+\frac{sina.cosa}{cota}=1\)Chứng minh đẳng thức :
Các bạn giải gấp cho mình câu này nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho
Giả sử có \(\Delta ABC\) có \(A=90^o;AH\) là đường cao
Có \(\sin\widehat{B}=\frac{AC}{BC};\cos\widehat{B}=\frac{AB}{BC};\tan\widehat{B}=\frac{AC}{AB};\cot\widehat{B}=\frac{AB}{AC}\)
\(\frac{\cot^2\widehat{B}-\cos^2\widehat{B}}{\cot^2\widehat{B}}+\frac{\sin\widehat{B}.\cos\widehat{B}}{\cot\widehat{B}}=\frac{\frac{AB^2}{AC^2}-\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC}{BC}.\frac{AB}{BC}}{\frac{AB}{AC}}\)
\(=\frac{\frac{AB^2}{AC^2}}{\frac{AB^2}{AC^2}}-\frac{\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC.AB}{BC^2}}{\frac{AB}{AC}}=1-\frac{AC^2}{BC^2}+\frac{AC^2}{BC^2}=1\)
Mấy bài nè vận dụng hệ thức sin cos tan cot
Tớ gắn vào tam giấc bạn vẽ hình là biết liền ấy mà
Chứng minh các công thức sau:
a) tana=\(\frac{sina}{cosa}\) b)cot ga=\(\frac{cosa}{sina}\) c)tana.cot ga=1
d) \(^{sin^2a+cos^2a=1}\)
e) \(1+tan^2a=\frac{1}{cos^2a}\)
f)\(1+cotg^2a=\frac{1}{sin^2a}\)
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)