Những câu hỏi liên quan
H24
Xem chi tiết
HP
31 tháng 5 2021 lúc 23:41

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

Bình luận (0)
NC
Xem chi tiết
NC
5 tháng 11 2019 lúc 16:10

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

Bình luận (0)
 Khách vãng lai đã xóa
NL
6 tháng 11 2019 lúc 8:34

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
27 tháng 8 2020 lúc 23:04

a/

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)

\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:06

b/ ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin2x.sinx+cos2x.cosx}{sinx.cosx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}\)

\(\Leftrightarrow\frac{cos\left(2x-x\right)}{sinx.cosx}=\frac{sin^2x-cos^2x}{sinx.cosx}\)

\(\Leftrightarrow cosx=sin^2x-cos^2x\)

\(\Leftrightarrow cosx=1-2cos^2x\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)

Bình luận (0)
NL
27 tháng 8 2020 lúc 23:10

c/ ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{1-cos^2x+1-sin^3x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1}{cos^2x}=\frac{sin^2x}{1-sin^3x}+1\)

\(\Leftrightarrow\frac{1}{cos^2x}-1=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{1-cos^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\frac{sin^2x}{cos^2x}=\frac{sin^2x}{1-sin^3x}\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x=1-sin^3x\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1-sin^2x=1-sin^3x\)

\(\Leftrightarrow sin^3x-sin^2x=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=1\left(l\right)\end{matrix}\right.\)

Bình luận (0)
TN
Xem chi tiết
NL
18 tháng 10 2020 lúc 9:23

ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\)

\(\frac{1}{\frac{sinx}{cosx}+\frac{cos2x}{sin2x}}=\frac{\sqrt{2}\left(cosx-sinx\right)}{\frac{cosx}{sinx}-1}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cos2x.cosx+sin2x.sinx}=\frac{\sqrt{2}sinx\left(cosx-sinx\right)}{cosx-sinx}\)

\(\Leftrightarrow\frac{sin2x.cosx}{cosx}=\sqrt{2}sinx\)

\(\Leftrightarrow2sinx.cosx=\sqrt{2}sinx\)

\(\Leftrightarrow cosx=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\left(l\right)\\x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

Vậy \(x=-\frac{\pi}{4}+k2\pi\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NL
18 tháng 9 2020 lúc 14:01

ĐKXĐ:

29.

\(\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx.cosx\ne0\)

\(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)

30.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\) (như câu trên)

31.

\(sinx\ne0\Leftrightarrow x\ne k\pi\)

32.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sin2x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin2x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
18 tháng 9 2020 lúc 14:04

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

Bình luận (0)
NL
18 tháng 9 2020 lúc 14:08

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 8 2023 lúc 2:54

1B

2A

3A

4C

Bình luận (0)
HV
Xem chi tiết
H24
11 tháng 9 2016 lúc 23:41

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

Bình luận (0)
AH
Xem chi tiết
QD
1 tháng 12 2019 lúc 21:23

giải hpt : \(\left\{{}\begin{matrix}\sin x+\cos x=\frac{1}{5}\\\sin^2x+\cos^2x=1\end{matrix}\right.\)

tìm ra sinx, cosx r tìm tanx, cotx

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
8 tháng 6 2019 lúc 19:14

1/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)

\(\frac{sinx}{cosx}-\frac{cosx}{sinx}+3cot^2x=5\Leftrightarrow\frac{sin^2x-cos^2x}{sinx.cosx}+3cot^2x=5\)

\(\Leftrightarrow\frac{-2cos2x}{sin2x}+3cot^22x=5\Leftrightarrow3cot^22x-2cot2x-5=0\)

\(\Rightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow...\)

b/ ĐKXĐ: \(sin2x\ne0\Rightarrow x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow\frac{sin5x}{sinx}-\frac{cos5x}{cosx}=2cos4x-1\Leftrightarrow\frac{sin5x.cosx-cos5x.sinx}{sinx.cosx}=2cos4x-1\)

\(\Leftrightarrow\frac{sin\left(5x-x\right)}{\frac{1}{2}sin2x}=2cos4x-1\Leftrightarrow\frac{2sin4x}{sin2x}=2cos4x-1\)

\(\Leftrightarrow\frac{4sin2x.cos2x}{sin2x}=2\left(2cos^22x-1\right)-1\)

\(\Leftrightarrow4cos2x=4cos^22x-3\Leftrightarrow4cos^22x-4cos2x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cos2x=\frac{3}{2}>1\left(l\right)\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow...\)

Bình luận (0)