Những câu hỏi liên quan
DH
Xem chi tiết
NM
27 tháng 11 2021 lúc 22:24

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

Bình luận (0)
DH
Xem chi tiết
MT
Xem chi tiết
HP
31 tháng 7 2021 lúc 22:47

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi

Bình luận (0)
KR
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
MH
Xem chi tiết
H24
29 tháng 6 2017 lúc 21:46

a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (1)

\(\Leftrightarrow9x-7=\sqrt{\left(7x+5\right)\left(7x+5\right)}\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)\left(7x+5\right)}=7\)

\(\Leftrightarrow9x-\sqrt{\left(7x+5\right)^2}=7\)

\(\Leftrightarrow9x-\left|7x+5\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\left(7x+5\right)=7\left(đk:7x+5\ge0\right)\\9x-\left[-\left(7x+5\right)\right]=7\left(đk:7x+5< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(đk:x\ge-\dfrac{5}{7}\right)\\x=\dfrac{1}{8}\left(đk:x< -\dfrac{5}{7}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow x=6\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{6\right\}\)

b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\) (2)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3\cdot\dfrac{\sqrt{x+5}}{3}-\dfrac{1}{3}\cdot\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow\sqrt{4}\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot\sqrt{9}\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x+5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x-5}=4-\sqrt{x+5}\)

\(\Leftrightarrow x-5=\left(4-\sqrt{x+5}\right)^2\)

\(\Leftrightarrow x-5=16-8\sqrt{x+5}+x+5\)

\(\Leftrightarrow-5=16-8\sqrt{x+5}+5\)

\(\Leftrightarrow-5=21-8\sqrt{x+5}\)

\(\Leftrightarrow8\sqrt{x+5}=21+5\)

\(\Leftrightarrow8\sqrt{x+5}=26\)

\(\Leftrightarrow\sqrt{x+5}=\dfrac{13}{4}\)

\(\Leftrightarrow x+5=\dfrac{169}{16}\)

\(\Leftrightarrow x=\dfrac{169}{16}-5\)

\(\Leftrightarrow x=\dfrac{89}{16}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{89}{16}\right\}\)

Bình luận (4)
AK
Xem chi tiết
NT
16 tháng 8 2023 lúc 9:33

a:

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

=>|x-3|=3

=>x-3=3 hoặc x-3=-3

=>x=0 hoặc x=6

b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

=>\(\left|\sqrt{x-1}+1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)

=>x-1=1

=>x=2

c:

ĐKXĐ: x>4/5

PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

d: ĐKXĐ: x-4>=0 và x+1>=0

=>x>=4

PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)

=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)

=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)

=>\(\sqrt{x^2-3x-4}=14-x\)

=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196

=>x<=14 và -3x-4=-28x+196

=>x<=14 và 25x=200

=>x=8(nhận)

Bình luận (0)
H9
16 tháng 8 2023 lúc 9:37

a) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3 \)

TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=3+3\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)

Pt trở thành:

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=-3+3\)

\(\Leftrightarrow x=0\left(tm\right)\)

b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))

\(\Leftrightarrow x+2\sqrt{x-1}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4-x\)

\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)

\(\Leftrightarrow4x-4=16-8x+x^2\)

\(\Leftrightarrow x^2-12x+20=0\)

\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)

\(\Leftrightarrow5x-4=4x+8\)

\(\Leftrightarrow x=12\left(tm\right)\)

Bình luận (1)
NK
Xem chi tiết
NT
10 tháng 7 2020 lúc 23:26

1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)

\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)

\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)

\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)

Trường hợp 1: \(x\ge\sqrt{2}\)

(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)

\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)

\(\Leftrightarrow x-2\sqrt{2}+2=0\)

\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)

Trường hợp 2: \(x< \sqrt{2}\)

(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)

\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)

\(\Leftrightarrow2-x=0\)

hay x=2(loại)

Vậy: S=∅

Bình luận (0)
H24
16 tháng 12 2020 lúc 21:25

\(1.4x^2-12x+9=9-12x+4x^2\)

\(0x=0\)

Pt tm với mọi x

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NT
4 tháng 12 2019 lúc 20:05

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TG
28 tháng 11 2021 lúc 17:58

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

Bình luận (0)