Chương I - Căn bậc hai. Căn bậc ba

NK

Giải pt sau:

1/ \(\sqrt{4x^2-12x+9}=3-2x\)

2/ \(\sqrt{x^2-2\sqrt{2}x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

NT
10 tháng 7 2020 lúc 23:26

1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)

\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)

\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)

\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)

\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)

\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)

Trường hợp 1: \(x\ge\sqrt{2}\)

(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)

\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)

\(\Leftrightarrow x-2\sqrt{2}+2=0\)

\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)

Trường hợp 2: \(x< \sqrt{2}\)

(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)

\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)

\(\Leftrightarrow2-x=0\)

hay x=2(loại)

Vậy: S=∅

Bình luận (0)
H24
16 tháng 12 2020 lúc 21:25

\(1.4x^2-12x+9=9-12x+4x^2\)

\(0x=0\)

Pt tm với mọi x

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NK
Xem chi tiết
LG
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
QT
Xem chi tiết
LG
Xem chi tiết
TT
Xem chi tiết
LG
Xem chi tiết