Những câu hỏi liên quan
RN
Xem chi tiết
VD
18 tháng 1 2024 lúc 0:03

Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi . 

OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh

Bình luận (0)
NN
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
NT
3 tháng 1 2024 lúc 11:20

a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)

=>MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBM vuông tại B có BH là đường cao

nên \(OH\cdot HM=HB^2\)

=>\(OH\cdot HM=HB\cdot HC\)

Bình luận (0)
HN
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
TM
Xem chi tiết
NL
3 tháng 1 2024 lúc 20:05

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

Bình luận (0)
NL
3 tháng 1 2024 lúc 20:06

loading...

Bình luận (0)
QT
Xem chi tiết
NT
21 tháng 12 2021 lúc 20:11

a: Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

Bình luận (0)
NA
Xem chi tiết
NL
18 tháng 1 2024 lúc 18:32

a. Câu này đơn giản em tự giải.

b.

Ta có: \(\left\{{}\begin{matrix}OB=OC=R\\MB=MC\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OM\) là trung trực của BC

\(\Rightarrow OM\perp BC\) tại H đồng thời H là trung điểm BC hay \(HB=HC\)

\(OC\perp MC\) (MC là tiếp tuyến tại C) \(\Rightarrow\Delta OMC\) vuông tại C

Áp dụng hệ thức lượng trong tam giác vuông OMC với đường cao CH:

\(CH^2=OH.MH\)

c.

C nằm trên đường tròn và AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\)

Xét hai tam giác MBH và BAC có:

\(\left\{{}\begin{matrix}\widehat{MHB}=\widehat{ACB}=90^0\\\widehat{MBH}=\widehat{BAC}\left(\text{cùng chắn BC}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta MBH\sim\Delta BAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{MH}{BC}\Rightarrow\dfrac{BH}{AC}=\dfrac{2HF}{2CH}\) (do F là trung điểm MH và H là trung điểm BC)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{HF}{CH}\)

Xét hai tam giác BHF và ACH có:

\(\left\{{}\begin{matrix}\dfrac{BH}{AC}=\dfrac{HF}{CH}\left(cmt\right)\\\widehat{BHF}=\widehat{ACH}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BHF\sim\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{HBF}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{CBQ}\) (cùng chắn CQ)

\(\Rightarrow\widehat{HBF}=\widehat{CBQ}\) hay \(\widehat{HBF}=\widehat{HBQ}\)

\(\Rightarrow B,Q,F\) thẳng hàng

Bình luận (0)
NL
18 tháng 1 2024 lúc 18:33

loading...

Bình luận (0)