Chương II - Đường tròn

NA

Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ các tiếp tuyến MB,MC tới (O) (B,C là tiếp điểm). Gọi H là giao điểm của MO với BC. Vẽ đường kính BA.                                                                                                     a) Cm các điểm M,B,O,C cùng nằm trên 1 đg tròn                                               b) Cm: CH^2=OH.HM                                                                      c) Gọi F là trung điểm của MH,AH cắt (O) tại giao điểm thứ hai là Q.Cm tam giác MBH đồng dạng tam giác BAC và B,Q,F thẳng hàng                                                          

NL
18 tháng 1 2024 lúc 18:32

a. Câu này đơn giản em tự giải.

b.

Ta có: \(\left\{{}\begin{matrix}OB=OC=R\\MB=MC\left(\text{t/c hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OM\) là trung trực của BC

\(\Rightarrow OM\perp BC\) tại H đồng thời H là trung điểm BC hay \(HB=HC\)

\(OC\perp MC\) (MC là tiếp tuyến tại C) \(\Rightarrow\Delta OMC\) vuông tại C

Áp dụng hệ thức lượng trong tam giác vuông OMC với đường cao CH:

\(CH^2=OH.MH\)

c.

C nằm trên đường tròn và AB là đường kính \(\Rightarrow\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\)

Xét hai tam giác MBH và BAC có:

\(\left\{{}\begin{matrix}\widehat{MHB}=\widehat{ACB}=90^0\\\widehat{MBH}=\widehat{BAC}\left(\text{cùng chắn BC}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta MBH\sim\Delta BAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{MH}{BC}\Rightarrow\dfrac{BH}{AC}=\dfrac{2HF}{2CH}\) (do F là trung điểm MH và H là trung điểm BC)

\(\Rightarrow\dfrac{BH}{AC}=\dfrac{HF}{CH}\)

Xét hai tam giác BHF và ACH có:

\(\left\{{}\begin{matrix}\dfrac{BH}{AC}=\dfrac{HF}{CH}\left(cmt\right)\\\widehat{BHF}=\widehat{ACH}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta BHF\sim\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{HBF}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{CBQ}\) (cùng chắn CQ)

\(\Rightarrow\widehat{HBF}=\widehat{CBQ}\) hay \(\widehat{HBF}=\widehat{HBQ}\)

\(\Rightarrow B,Q,F\) thẳng hàng

Bình luận (0)
NL
18 tháng 1 2024 lúc 18:33

loading...

Bình luận (0)

Các câu hỏi tương tự
TK
Xem chi tiết
3M
Xem chi tiết
VN
Xem chi tiết
NK
Xem chi tiết
NQ
Xem chi tiết
NK
Xem chi tiết
XL
Xem chi tiết
NM
Xem chi tiết
BA
Xem chi tiết