Cho 3x + 2y = 4
2x - y = m
Tìm m để hpt có nghiệm duy nhất thỏa x < 1 , y < 1.
B1: Cho hpt:{ 3x+my=10 { x - y=5
a.tìm m để hpt có nghiêm (x;y) trong đó x = 4 b.tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn 5x + 2y = 32
B2: Định m để hpt có nghiệm duy nhất là nghiệm nguyên { mx + 2y = m + 1 { 2x + my = 2m - 1
1, cho hpt (m+1)x + y=4 và mx+y=2m
m là tham số .tìm m để hpt có nghiệm (x;y) thỏa mãn x+y =2
2, cho hpt 3x + (m-1)y=12 và (m-1)x +12y=24
a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y = -1
b, tìm m nguyên để hpt có nghiệm duy nhất là nghiệm nguyên
Cho HPT: \(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a, Giải HPT khi m = -3
b, Tìm m để HPT có nghiệm duy nhất (x;y) thỏa mãn điều kiện x + y2 = 1
a. Bạn tự giải
b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)
\(\Leftrightarrow m^2-4m-3=0\)
\(\Leftrightarrow...\)
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
tìm m để hpt : x+y=3m+2 và 3x -2y = 11-m . Tìm m để hpt có nghiệm (x,y) thỏa mãn đạt GTLN
Cho hpt : (m-2)x -3y = -5 và x+my =3 . Chứng minh hpt luôn có nghiệm với mọi m . Tìm nghiệm duy nhất đó
Mọi người giúp mjnh với chứ mai nộp rồi :(
Cho HPT: \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) (m là tham số thực). Tìm giá trị của m để HPT trên có nghiệm duy nhất (x;y) thỏa mãn: Điểm M(x;y) nằm hoàn toàn phía bên trái đường thẳng: \(x=\sqrt{3}\)
Vì \(\dfrac{2}{3}\ne\dfrac{-1}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y+3x-2y=2m+5\\2x+y=m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{7}m+\dfrac{5}{7}\\y=m-2\left(\dfrac{2}{7}m+\dfrac{5}{7}\right)=\dfrac{3}{7}m-\dfrac{10}{7}\end{matrix}\right.\)
Vậy: \(M\left(\dfrac{2}{7}m+\dfrac{5}{7};\dfrac{3}{7}m-\dfrac{10}{7}\right)\)
Để M nằm hoàn toàn phía bên trái đường thẳng \(x=\sqrt{3}\) thì \(\dfrac{2}{7}m+\dfrac{5}{7}< \sqrt{3}\)
=>\(2m+5< 3\sqrt{7}\)
=>\(2m< 3\sqrt{7}-5\)
=>\(m< \dfrac{3\sqrt{7}-5}{2}\)
Bài 1:Cho hệ
mx+y=3 (1)
9x+my=2m+3 (2)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: 3x+2y=9
Bài 2:Cho hệ
mx+y= m^2
x+my=1 (m là tham số)
Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y>0