Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
EN
Xem chi tiết
NL
1 tháng 4 2020 lúc 10:45

\(\Leftrightarrow\frac{x+1}{x}-\frac{x^2-5x+6}{x^2+5x+6}\le0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2+5x+6\right)-x\left(x^2-5x+6\right)}{x\left(x+2\right)\left(x+3\right)}\le0\)

\(\Leftrightarrow\frac{11x^2+5x+6}{x\left(x+2\right)\left(x+3\right)}\le0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\-2< x< 0\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
HH
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
LH
Xem chi tiết
HH
Xem chi tiết
NT
24 tháng 1 2022 lúc 23:07

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

Bình luận (1)
CG
Xem chi tiết
H24
Xem chi tiết
H24
29 tháng 10 2017 lúc 19:04

\(x^2-5x+6\ge0\)

\(x^2-2x-3x+6\ge0\)

\(x\left(x-2\right)-3\left(x-2\right)\ge0\)

\(\left(x-3\right)\left(x-2\right)\ge0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3\le0\\x-2\le0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}x\ge3\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x\le2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)

vậy tập nghiệm của phương trình là \(\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)

\(x^2-6x+8< 8\)

\(x^2-4x-2x+8< 0\)

\(x\left(x-4\right)-2\left(x-4\right)< 0\)

\(\left(x-2\right)\left(x-4\right)< 0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-2>0\\x-4< 0\end{cases}}\)   hoặc  \(\hept{\begin{cases}x-2< 0\\x-4>0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}x>2\\x< 4\end{cases}}\)  hoặc    \(\hept{\begin{cases}x< 2\\x>4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2< x< 4\\\varnothing\end{cases}}\)

vậy  \(2< x< 4\)   hay \(x=3\)

\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)

\(\frac{\left(x-1\right).2}{6}-\frac{\left(2x+1\right).3}{6}< \frac{5x+1}{6}-\frac{6x}{6}\)

\(2x-2-6x-3< 5x+1-6x\)

\(-3x< 6\)

\(x>-2\)

vậy tập nghiệm của bất phương trình là \(x>-2\)

Bình luận (0)