\(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải bất phương trình sau:
\(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
\(\Leftrightarrow\frac{x+1}{x}-\frac{x^2-5x+6}{x^2+5x+6}\le0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2+5x+6\right)-x\left(x^2-5x+6\right)}{x\left(x+2\right)\left(x+3\right)}\le0\)
\(\Leftrightarrow\frac{11x^2+5x+6}{x\left(x+2\right)\left(x+3\right)}\le0\)
\(\Leftrightarrow x\left(x+2\right)\left(x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x< -3\\-2< x< 0\end{matrix}\right.\)
Bài 4 Giải các bất phương trình sau :
31 , \(\frac{-3x^2-x+4}{x^2+3x+5}>0\)
32 , \(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
33 , \(\frac{5x^2+3x-8}{x^2-7x+6}< 0\)
34 , \(\frac{2x-5}{x^2-6x-7}< \frac{1}{x-3}\)
35 , \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
1. Giải các bất phương trình sau :
a, (2x2 - 6x - 8 )(-x2 - x + 12 ) < 0
b, ( 1 - 2x )(x2 + x - 30 )(x2 - 4x + 4 ) \(\le\) 0
c, \(\frac{2x^2-5x+2}{x^2+7x+12}\ge0\)
d, \(\frac{2x^2-7x-7}{x^2-3x-10}\le1\)
e, \(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
f, \(\frac{2}{x^2-x+1}-\frac{1}{x+1}\ge\frac{2x-1}{x^3+1}\)
Giải bất phương trình:
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\)≥ \(0\)
Giải phương trình \(\left(\frac{7}{x^2+x-12}-\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}-\frac{3}{x^2+5x+4}\right)=\frac{3x}{x^2-1}\)
giải bất phương trình
a/\(\frac{x^4-x^2}{x^2+5x+6}\le0\)
b/\(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
c/\(\frac{x^4+x^2+1}{x^2-4x-5}\le0\)
d/\(\frac{-2x^2+7x+7}{x^2-3x-10}\le-1\)
e/\(\frac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\frac{1}{x-2}\)
$\frac{4x+3}{5}$ -$\frac{6x-2}{7}$ =$\frac{5x+4}{3}$ +3
b.
$\frac{x+4}{5}$ -x+4=$\frac{x}{3}$ -$\frac{x-2}{2}$
c.$\frac{5x+2}{6}$ -$\frac{8x-1}{3}$ =$\frac{4x+2}{5}$ -5
d.$\frac{2x+3}{3}$ =$\frac{5-4}{2}$
e. $\frac{5x+3}{12}$ =$\frac{1+2x}{9}$
f.$\frac{7x-1}{6}$ =$\frac{16-x}{5}$
g. $\frac{x-3}{5}$ =6-$\frac{1-2x}{3}$
h. $\frac{3x-2}{6}$ -5=$\frac{3-2(x+7)}{4}$
giúp vs ạ, cần gấp
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
(\(\frac{x+2}{x^2-5x+6}\)-\(\frac{x+3}{2-x}\)+\(\frac{x+2}{x-3}\)):(2-\(\frac{x}{x-1}\))
\(x^2-5x+6\ge0\)
\(x^2-6x+8< 8\)
\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)
\(x^2-5x+6\ge0\)
\(x^2-2x-3x+6\ge0\)
\(x\left(x-2\right)-3\left(x-2\right)\ge0\)
\(\left(x-3\right)\left(x-2\right)\ge0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3\le0\\x-2\le0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x\ge3\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x\le2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
vậy tập nghiệm của phương trình là \(\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
\(x^2-6x+8< 8\)
\(x^2-4x-2x+8< 0\)
\(x\left(x-4\right)-2\left(x-4\right)< 0\)
\(\left(x-2\right)\left(x-4\right)< 0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-2>0\\x-4< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x-4>0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x>2\\x< 4\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2< x< 4\\\varnothing\end{cases}}\)
vậy \(2< x< 4\) hay \(x=3\)
\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)
\(\frac{\left(x-1\right).2}{6}-\frac{\left(2x+1\right).3}{6}< \frac{5x+1}{6}-\frac{6x}{6}\)
\(2x-2-6x-3< 5x+1-6x\)
\(-3x< 6\)
\(x>-2\)
vậy tập nghiệm của bất phương trình là \(x>-2\)