giair phương trình \(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
Giair phương trình sau:
a,\(2x^3+5x^2-3x=0\) b,\(2x^3+6x^2=x^2+3x\)
c,\(x^2+\left(x+2\right)\left(11x-7\right)=4\) d,\(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
e, \(x^3+1=x\left(x+1\right)\) f,\(x^3+x^2+x+1=0\)
g,\(x^3-3x^2+3x-1=0\) h,\(x^3-7x+6=0\)
i,\(x^6-x^2=0\) j,\(x^3-12=13x\)
k,\(-x^5+4x^4=-12x^3\) l, \(x^3=4x\)
a) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
b) Ta có: \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)
Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!
Giair phương trình:
\(\left(x^2+6x+10\right)^2+\left(x+3\right)\left(3x^2+20x+36\right)\)=0\(\frac{4x+2}{\sqrt{x+3}}+x\sqrt{x+8}=\)\(x\left(2x+1\right)+2\sqrt{\frac{x+8}{x+3}}\)giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Giair phương trình sau:
a,\(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
b,\(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)
b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)
\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)
Giair phương trình: \(\left(2\sqrt{x+2}-\sqrt{4x-1}\right)\left(2x+3+\sqrt{4x^2}+9x+2\right)=7\)
giải phương trình:
\(x^2+6x+1-\left(2x+1\right)\sqrt{x^2+2x+3}=0\)
ta có:
pt trên \(< =>x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
\(< =>\left[\left(x^2+6x\right)+1\right]^2=\left(2x+1\right)^2.\left(x^2+2x+3\right)\)
\(< =>x^4+12x^3+36x^2+2.\left(x^2+6x\right)+1=\left(4x^2+4x+1\right)\left(x^2+2x+3\right)\)
\(< =>x^4+12x^3+38x^2+12x+1=\)
\(4x^4+8x^3+12x^2+4x^3+8x^2+12x+x^2+2x+3\)
\(=4x^4+12x^3+21x^2+14x+3\)
\(< =>-3x^4+17x^2-2x-2=0\)
\(< =>-\left(x^2+2x-1\right)\left(3x^2-6x+2\right)=0\)
đến đây dễ rùi bạn tự giải nhé
Giải phương trình: \(x^2+6x+1-\left(2x+1\right).\sqrt{x^2+2x+3}=0\)
Giải phương trình: \(x^2+6x+1-\left(2x+1\right)\sqrt{x^2+2x+3}=0\)
\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)
\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)
\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)
`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)
`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)