NT

giair phương trình  \(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

MC
20 tháng 1 2020 lúc 20:24

ĐK: \(x^2+2x+3>0\)(BĐT đúng)     (Tự Cm được)

Với đk trên, đặt:

\(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)với a > 0

\(\Leftrightarrow\hept{\begin{cases}a^2=x^2+2x+3\\2b=4x+2\end{cases}\Rightarrow a^2+2b=x^2+6x+5}\)

Pt trở thành

\(a^2+2b-4=ab\)

\(\Leftrightarrow4a^2+8b-16=4ab\)

\(\Leftrightarrow4a^2-4ab=-8b+16\)

\(\Leftrightarrow4a^2-4ab+b^2=b^2-8b+16\)

\(\Leftrightarrow\left(2a-b\right)^2=\left(b-4\right)^2\)

Đến đây tự làm nha

Bình luận (0)
 Khách vãng lai đã xóa