Những câu hỏi liên quan
PT
Xem chi tiết
KR
Xem chi tiết
TL
Xem chi tiết
AD
Xem chi tiết
NL
2 tháng 10 2019 lúc 18:49

a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)

\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:

\(t^2-t+2=0\) (vô nghiệm)

TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)

b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)

Bình luận (0)
NL
2 tháng 10 2019 lúc 18:56

c/ Trừ vế với vế:

\(x^2-y^2-2x+2y=y-x\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)

Thay vào pt đầu:

\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)

d/ Sao có t từ đâu vào đây thế này? :(

e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)

Bình luận (0)
AD
Xem chi tiết
LL
Xem chi tiết
NL
3 tháng 10 2020 lúc 23:28

\(xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\)

\(\Leftrightarrow xy\left[\left(x+y\right)^2-2xy\right]+2-\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left[\left(xy\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-\left(xy-1\right)\left(2xy+2\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2xy-2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1\\x^2+y^2=2\end{matrix}\right.\)

- Với \(xy=1\)

\(xy\left(5x-4y\right)+3y^3-2x-2y=0\)

\(\Leftrightarrow3y^3+3x-6y=0\)

\(\Leftrightarrow3y^3+\frac{3}{y}-6y=0\)

\(\Leftrightarrow3y^4-6y^2+3=0\Leftrightarrow3\left(y^2-1\right)^2=0\Leftrightarrow...\)

- Với \(x^2+y^2=2\)

\(\Rightarrow2x^2y-4xy^2+3y\left(x^2+y^2\right)-2x-2y=0\)

\(\Leftrightarrow2x^2y-4xy^2-2x+4y=0\)

\(\Leftrightarrow2x\left(xy-1\right)-4y\left(xy-1\right)=0\)

\(\Leftrightarrow2\left(x-2y\right)\left(xy-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\xy=1\end{matrix}\right.\) \(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
HC
Xem chi tiết
LL
Xem chi tiết
H24
17 tháng 2 2018 lúc 23:42

Viết lại (2)

\(xy\left(x^2+y^2\right)+2-\left(x+y\right)^2=0\)

\(\Leftrightarrow xy\left(x+y\right)^2-2x^2y^2+2-\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left(x^2y^2-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2\left(xy+1\right)\right]=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)

- TH1: \(xy=1\)

\(\left(1\right)\Rightarrow5x-4y+3y^3-2\left(x+y\right)=0\)

\(\Leftrightarrow3x-6y+3y^3=0\)

\(\Leftrightarrow\dfrac{3}{y}-6y+3y^3=0\)

Đến đây dễ rồi nhé.

- TH2: \(x^2+y^2=2\)

\(\left(1\right)\Rightarrow5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)

\(\Leftrightarrow-x^3+2y^3+4x^2y-5xy^2=0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x-2y\right)=0\)

Đến đây dễ rồi nhé.

Bình luận (0)