Những câu hỏi liên quan
DP
Xem chi tiết
NT
21 tháng 10 2019 lúc 19:18

Yêu cầu của bài này là gì vậy bạn? Không thì biết là làm cái gì :))

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
28 tháng 9 2021 lúc 7:54

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\\ \Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{81-80}=18-3x\\ \Leftrightarrow x^3-3x=18\\ y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\\ \Leftrightarrow y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{9-8}=6+3y\\ \Leftrightarrow y^3-3y=6\\ \Leftrightarrow P=x^3+y^3-3\left(x+y\right)+1993\\ P=x^3+y^3-3x-3y+1993=18+6+1993=2017\)

Bình luận (0)
LL
28 tháng 9 2021 lúc 7:57

Áp dụng: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(=18+3\sqrt[3]{81-80}.x=18+3x\)

\(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)

\(\Rightarrow y^3=3-2\sqrt{2}+3+2\sqrt{2}+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}y=6+3y\)

\(P=x^3+y^3-3\left(x+y\right)+1993\)

\(=18+3x+6+3y-3x-3y+1993=2017\)

Bình luận (0)
H24
Xem chi tiết
NM
29 tháng 12 2021 lúc 10:49

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

Bình luận (0)
BH
Xem chi tiết
NT
15 tháng 1 2023 lúc 23:50

a: =>2x-4+3+3y=-2 và 3x-6-2-2y=-3

=>2x+3y=-2+4-3=2-3=-1 và 3x-2y=-3+6+2=5

=>x=1; y=-1

b: =>x^2-x+xy-y=x^2+x-xy-y+2xy

=>-x-y=x-y và y^2+y-yx-x=y^2-2y+xy-2x-2xy

=>x=0 và y-x=-2y-2x

=>x=0 và y=0

Bình luận (2)
TN
Xem chi tiết
NL
5 tháng 4 2021 lúc 19:35

Với \(x=0\) không phải nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:

\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 4 2021 lúc 19:41

Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý

b.

Đặt \(x+3=t\) 

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)

\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)

\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)

Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.

Bình luận (1)
NT
5 tháng 4 2021 lúc 20:03

c)Ta có: \(\left(x-3\right)\left(x-2\right)\left(x+1\right)=60\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x+1\right)=60\)

\(\Leftrightarrow x^3+x^2-5x^2-5x+6x+6-60=0\)

\(\Leftrightarrow x^3-4x^2+x-54=0\)

Bạn xem lại đề, nghiệm rất xấu

 

Bình luận (0)
NC
Xem chi tiết
NC
16 tháng 12 2019 lúc 9:20

Rút gọn giùm mik nha

Bình luận (0)
 Khách vãng lai đã xóa
SP
Xem chi tiết
NN
5 tháng 6 2017 lúc 18:43

x1994+x1993+1:x2+x+1

=(x1994+x1993:x2+x)+1

=x996+1

vậy dư là x996+1

chắc zậy bucminh

Bình luận (2)
MD
5 tháng 6 2017 lúc 20:44

Câu 1 tự lm.

Câu 2:

Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)

= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)

= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)

= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)

= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)

= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)

= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)

\(x^2+x+1\) \(⋮\) \(x^2+x+1\)

=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0

Bình luận (11)
H24
Xem chi tiết
NT
7 tháng 2 2023 lúc 23:57

=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21

=>2x-2y=-8 và x+y=0

=>x-y=-4 và x+y=0

=>2x=-4 và x+y=0

=>x=-2 và y=2

Bình luận (0)
TD
Xem chi tiết
TD
18 tháng 12 2016 lúc 11:14

đặt x+y=a,x-y=b

hpt\(\Leftrightarrow\begin{cases}3a-2b=-9\\2a-3b=-11\end{cases}\)\(\Leftrightarrow\begin{cases}6a-4b=-18\\6a-9b=-33\end{cases}\)\(\Leftrightarrow\begin{cases}5b=15\\2a-3b=-11\end{cases}\)

\(\Leftrightarrow\begin{cases}b=3\\a=-1\end{cases}\)\(\Leftrightarrow\begin{cases}x+y=-1\\x-y=3\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=-2\end{cases}\)

vậy hpt có nghiệm x=1,y=-2

 

Bình luận (0)
TL
18 tháng 12 2016 lúc 11:17

\(\begin{cases}3\left(x+y\right)+9=2\left(x-2\right)\\2\left(x+y\right)=3\left(x-y\right)-11\end{cases}\)

\(\Leftrightarrow5\left(x+y\right)+9=5\left(x-y\right)-11\)

\(\Leftrightarrow5\left(x+y\right)-5\left(x-y\right)+20=0\)

\(\Leftrightarrow5\left(x+y-x+y+4\right)=0\)

\(\Leftrightarrow2y+4=0\)

\(\Leftrightarrow2y=-4\Leftrightarrow y=-2\)

Vớ \(y=-2\) thay vào hft đã cho ta được: \(x=1\)

Vậy \(x=1;y=-2\)

Bình luận (0)