bài 2:
\(x^3-y^3-3\left(x+y\right)+1993\)
giải hệ
a,\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\6\left(x-y\right)+xy\left(x-y\right)=12\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(x+y\right)\\y\left(2x-y\right)=\left(2y+1\right)\end{matrix}\right.\)
x,y,z>0.Prove that:
\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
Tính GTBT: \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\) biết
\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)
\(y=\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\)
Tìm GTNN của A=\(\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)với x>1,y>1
Tìm GTNN của \(A=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) với x>1,y>1
Tìm GTNN của biểu thức: P = \(\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y-2}=-1\\\frac{4}{x}+\frac{3}{y-2}=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{matrix}\right.\)