Những câu hỏi liên quan
NH
Xem chi tiết
NL
30 tháng 3 2023 lúc 16:50

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

Bình luận (0)
MR
Xem chi tiết
H24
30 tháng 4 2023 lúc 10:51

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

Bình luận (0)
NH
Xem chi tiết
LP
25 tháng 12 2023 lúc 20:52

 Xét parabol \(\left(C_m\right):y=-2x^2-\left(2m-1\right)x+6-3m\), ta có \(\Delta=\left[-\left(2m-1\right)\right]^2-4\left(-2\right)\left(6+3m\right)=4m^2+20m+49\)

  Gọi \(I_m\) là đỉnh của \(\left(C_m\right)\) thì \(I_m\left(\dfrac{-2m+1}{4};\dfrac{4m^2+20m+49}{8}\right)\)

  Để hàm số đã cho nghịch biến trong khoảng \(\left(-2;+\infty\right)\) thì \(\dfrac{-2m+1}{4}=-2\Leftrightarrow m=\dfrac{9}{2}\)

 

Bình luận (0)
TC
25 tháng 12 2023 lúc 20:33

Tao đéo biết thằng Nguyễn Huy Hung nha ☹

Bình luận (0)
MH
28 tháng 12 2023 lúc 6:09

x y 1-2m/4 4m^2-28m+1/8

Để hàm số nghịch biến trên \(\left(-2;+\infty\right)\)

\(\Rightarrow\left(-2;+\infty\right)\subset\left(\dfrac{1-2m}{4};+\infty\right)\)

\(\Rightarrow\dfrac{1-2m}{4}\ge-2\)

\(\Rightarrow m\le\dfrac{9}{2}\)

Bình luận (0)
LV
Xem chi tiết
NL
20 tháng 6 2021 lúc 9:35

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

Bình luận (0)
NL
20 tháng 6 2021 lúc 9:49

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

Bình luận (0)
NL
20 tháng 6 2021 lúc 9:55

c.

Hàm số nghịch biến trên khoảng đã cho khi và chỉ khi:

\(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-4m+3\le0\) ; \(\forall x\in\left(-2;3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1\le-2< 3\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\f\left(-2\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\4+4\left(m-2\right)+m^2-4m+3\le0\\9-6\left(m-2\right)+m^2-4m+3\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2\le1\\m^2-10m+24\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Bình luận (0)
TM
Xem chi tiết
DT
12 tháng 12 2023 lúc 20:38

loading... 

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 11 2023 lúc 20:57

Để đây là hàm số bậc nhất thì \(\dfrac{m^2}{3-4m}< >0\)

=>\(m\notin\left\{0;\dfrac{3}{4}\right\}\)

Để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên R thì

\(\dfrac{m^2}{3-4m}< 0\)

=>3-4m<0

=>-4m<-3

=>\(m>\dfrac{3}{4}\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 8 2018 lúc 2:39

Chọn B

Bình luận (0)
HM
Xem chi tiết
NL
17 tháng 7 2021 lúc 21:05

\(y'=x^2-mx+2m\)

Hàm nghịch biến trên 1 đoạn có độ dài 3 khi và chỉ khi \(y'=0\) có 2 nghiệm pb thỏa mãn:

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-8m>0\\\left(x_1+x_2\right)^2-4x_1x_2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>8\end{matrix}\right.\\m^2-8m=9\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=9\end{matrix}\right.\)

Bình luận (0)
TM
Xem chi tiết
NT
12 tháng 12 2023 lúc 20:30

a: Để hàm số đồng biến trên R thì \(m^2-4>0\)

=>\(m^2>4\)

=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)

=>\(m^2< 4\)

=>-2<m<2

Bình luận (0)
TA
12 tháng 12 2023 lúc 20:31

a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 

Vậy m > 1313 nghịch biến

⇔ 3m - 1 < 0

⇔ 3m < 1

⇔ m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến

c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313)

⇔ 3 = 6m - 2 + 2

⇔ 3 = 6m

⇔ m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)

Bình luận (0)
KL
12 tháng 12 2023 lúc 20:32

a) Hàm số đồng biến khi:

m² - 4 > 0

⇔ m² > 4

⇔ m < -2 hoặc m > 2

Vậy m < -2; m > 2 thì hàm số đồng biến

b) Hàm số nghịch biến khi:

m² - 4 < 0

⇔ m² < 4

⇔ -2 < m < 2

Vậy -2 < m < 2 thì hàm số nghịch biến

Bình luận (0)
DT
Xem chi tiết
NT
11 tháng 7 2023 lúc 19:34

Chọn C

Bình luận (0)