Tìm x để hàm số có nghĩa:
f(x)=\(\sqrt{ }\) -x^3+4x + 1/\(\sqrt{ }\) -x^2 -x+2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
đạo hàm các hàm số sau:
1.y=\(\dfrac{\sqrt{x+1}}{x}\)
2.\(\dfrac{x}{1-x^2}\)
3. y=\(\dfrac{1}{x-\sqrt{x+1}}\)
cho f(x)=\(x^2+\dfrac{1}{x^2}\) tìm x để y'=0
y=\(\sqrt{1+\sqrt{1+x}}\) tìm x để f(x).f'(x)=\(\dfrac{1}{2\sqrt{2}}\)
1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)
2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)
3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)
4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)
5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)
\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\). tìm x để \(f'\left(x\right)=0\)
\(f'\left(x\right)=x^2-4\sqrt{2}x+8=\left(x-2\sqrt{2}\right)^2\)
\(f'\left(x\right)=0\Rightarrow\left(x-2\sqrt{2}\right)^2=0\Rightarrow x=2\sqrt{2}\)
Tìm x để B=\(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2}-4x+4}\) có nghĩa
Để B có nghĩa thì:
\(\left\{{}\begin{matrix}x-1\ge0\\x-1\ne0\\\sqrt{x^2}-4x+4\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne\dfrac{4}{3}\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0
2: ĐKXĐ: x<>1
\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)
\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)
f'(x)=0
=>x^2-2x=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
1:
\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)
=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)
f'(x)=0
=>\(\left(x-2\sqrt{2}\right)^2=0\)
=>\(x-2\sqrt{2}=0\)
=>\(x=2\sqrt{2}\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
a) Tìm xx để biểu thức sau có nghĩa: P=\(\sqrt{5x+3}+2018.\sqrt{x}\)
b) Cho hàm số y=\(\dfrac{1}{2}x^2\). Điểm Đ có hoành độ x=−2 thuộc đồ thị hàm số. Tìm tọa độ điểm D
c) Tìm giá trị của a và b để đường thẳng d:y=ax+b−1 đi qua hai điểm A(1;1) và B(2;3).
a: ĐKXĐ: \(\left\{{}\begin{matrix}5x+3>=0\\x>=0\end{matrix}\right.\Leftrightarrow x>=0\)
b: Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot4=2\)
Vậy: D(-2;2)
Cho biểu thức:\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x+2}{x-3\sqrt{x}+2}\)
a/ Tìm điều kiện để A có nghĩa và rút gọn A
b/ Tìm x để A>2
c/ Tìm số nguyên x sao cho A là số nguyên
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)