Những câu hỏi liên quan
SH
Xem chi tiết
NM
14 tháng 11 2021 lúc 21:18

\(a,m=1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

\(b,\) PT có 2 nghiệm pb \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2-8>0\\ \Leftrightarrow8m-4>0\Leftrightarrow m>\dfrac{1}{2}\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2+2\right)=10\\ \Leftrightarrow4m^2+8m+4-2m^2-4=10\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow m^2+4m-5=0\\ \Leftrightarrow\left(m+5\right)\left(m-1\right)=0\Leftrightarrow m=1\left(m>\dfrac{1}{2}\right)\)

Vậy m=1 thỏa mãn đề bài

Bình luận (0)
TB
Xem chi tiết
H24
Xem chi tiết
PL
9 tháng 4 2023 lúc 15:05

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

Bình luận (1)
PL
9 tháng 4 2023 lúc 15:19

b: \(\Delta=\left(-5\right)^2-4\left(m-2\right)=25-4m+8=33-4m\)

Theo viet:

\(x_1+x_2=-\dfrac{b}{a}=5\)

\(x_1x_2=\dfrac{c}{a}=m-2\)

Để pt có 2 nghiệm dương phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}33-4m>0\\5>0\left(TM\right)\\m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\x>2\end{matrix}\right.\Leftrightarrow m=2< m< \dfrac{33}{4}\)

Vậy \(2< m< \dfrac{33}{4}\) thì pt có 2 nghiệm dương phân biệt.

Theo đầu bài: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=\dfrac{3}{2}\left(\sqrt{x_1x_2}\right)\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow5+2\sqrt{x_1x_2}=\dfrac{9}{4}\left(m-2\right)\)

\(\Leftrightarrow\dfrac{9}{4}\left(m-2\right)-2\sqrt{m-2}-5=0\)

Đặt \(\sqrt{m-2}=t\Rightarrow m-2=t^2\)

\(\Rightarrow\dfrac{9}{4}t^2-2t-5=0\)

\(\Leftrightarrow\dfrac{9}{4}t^2-2+\left(-5\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(9t+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\9t+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=2\left(TM\right)\\t=-\dfrac{10}{9}\left(\text{loại}\right)\end{matrix}\right.\)

Trả ẩn:

\(\sqrt{m-2}=2\)

\(\Rightarrow m-2=4\)

\(\Rightarrow m=6\)

Vậy m = 6 thì x1 , x2 thoả mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=\dfrac{3}{2}\).

Bình luận (1)
DD
Xem chi tiết
LV
3 tháng 9 2019 lúc 21:20

Ủa sai đề hoài dị :v mình thấy mà mình tức á

Bình luận (2)
NK
Xem chi tiết
NT
20 tháng 1 2024 lúc 15:12

a: Thay m=4 vào phương trình, ta được:

\(x^2-4x+4-1=0\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b: \(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-1\right)\)

\(=16-4m+4=-4m+20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+20>0

=>-4m>-20

=>\(m< 5\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)

=>\(\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=20\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=20\)

=>\(4^2-2\cdot\left(m-1\right)+2\cdot4=20\)

=>-2(m-1)+24=20

=>-2(m-1)=-4

=>m-1=2

=>m=3(nhận)

Bình luận (0)
HB
Xem chi tiết
NT
25 tháng 8 2021 lúc 12:52

Đề sai rồi bạn

Bình luận (0)
HB
Xem chi tiết
NT
25 tháng 8 2021 lúc 13:15

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

Bình luận (0)
DL
Xem chi tiết
NL
21 tháng 4 2023 lúc 18:27

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

Bình luận (3)
ND
Xem chi tiết
NT
22 tháng 2 2023 lúc 0:10

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>0

=>Phương trình luôn có nghiệm

b: =>(x1+x2)^2-2x1x2=10

=>(2m-2)^2-2(m-3)=10

=>4m^2-8m+4-2m+6-10=0

=>4m^2-10m=0

=>2m(2m-5)=0

=>m=0 hoặc m=5/2

Bình luận (0)