Đơn giản biểu thức : \(M=sin^4x\left(1+2cos^2x\right)+cos^4x\left(1+2sin^2x\right)\)
1/Cho góc nhọn x. Hãy rút gọn các biểu thức sau:
a)\(sin^4x+cos^4x+2sin^2x.cos^2x\)
b)\(tan^2x\left(2cos^2x+sin^2x-1\right)\)
c)\(\left(1+tan^2x\right)\left(1-sin^2x\right)-\left(1+cot^2x\right)\left(1-cos^2\right)\)
Chứng minh các biểu thức sau không phụ thuộc vào x:
1, \(A=3\left(sin^4x+cos^4x\right)-2\left(sin^6x+cos^6x\right)\)
2, \(B=cos^6x+2sin^4x.cos^2x+3sin^2x.cos^4x+sin^4x\)
3, \(C=cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
4, \(D=cos^2x+cos^2\left(x+\dfrac{2\pi}{3}\right)+cos^2\left(\dfrac{2\pi}{3}-x\right)\)
5, \(E=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)-\left(sin^8x+cos^8x\right)\)
6, \(F=cos\left(\pi-x\right)+sin\left(\dfrac{-3\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\dfrac{3\pi}{2}-x\right)\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
chứng minh biểu thức không phụ thuộc vào x
\(A=2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
\(B=sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(C=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
\(D=\frac{1}{cos^6x}-tan^6x-\frac{tan^2x}{cos^2x}\)
\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)
là giá trị không phụ thuộc vào biến (đpcm)
-----------------------
\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)
\(=-\sin ^2x+\sin ^2x=0\)
là giá trị không phụ thuộc vào biến (đpcm)
\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)
\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)
\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)
\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)
là giá trị không phụ thuộc vào biến $x$
--------------------
\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)
\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)
\(=1+\frac{2\sin ^2x}{\cos ^4x}\)
Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
Câu 1 đề vẫn có vấn đề:
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2\left(1+cot^2x\right)cot^2x}{\left(tanx-1\right)\left(tan^2x+1\right)cot^2x}=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^2x}{tanx-1}\)
\(=\dfrac{1+cotx}{1-cotx}-\dfrac{2cot^3x}{1-cotx}=\dfrac{1+cotx-2cot^3x}{1-cotx}\)
\(=\dfrac{\left(1-cotx\right)\left(1+2cotx+2cot^2x\right)}{1-cotx}=1+2cotx+2cot^2x\)
Có thể coi như ko thể rút gọn tiếp
2.
\(\sqrt{\left(1-cos^2x\right)^2+6cos^2x+3cos^4x}+\sqrt{\left(1-sin^2x\right)^2+6sin^2x+3sin^4x}\)
\(=\sqrt{4cos^4x+4cos^2x+1}+\sqrt{4sin^4x+4sin^2x+1}\)
\(=\sqrt{\left(2cos^2x+1\right)^2}+\sqrt{\left(2sin^2x+1\right)^2}\)
\(=2\left(cos^2x+sin^2x\right)+2=4\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)
Trong các khẳng định sau, khẳng định nào là sai?
A. \(\left(sinx+cosx\right)^2=1+2sinxcosx\)
B. \(sin^4x+cos^4x=1-2sin^2xcos^2x\)
C. \(\left(sinx-cosx\right)^2=1-2sinxcosx\)
D. \(sin^6x+cos^6x=1-sin^2xcos^2x\)
1) Rút gọn biểu thức :
\(M=2\left(sin^4x+cos^4x+cos^2.sin^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)
\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)
Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)
\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)
\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)
\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)
\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)
\(M=\left(sin^2x+cos^2x\right)^2=1\)
Rút gọn biểu thức : \(M=\left(sin^4x+cos^4x-1\right)\left(tan^2x+cot^2x+2\right)\)
Viết liền 1 chỗ công thức hơi dài nên tách riêng 2 ngoặc ra rút gọn:
\(tan^2x+cot^2x+2.tanx.cotx=\left(tanx+cotx\right)^2=\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2=\frac{1}{sin^2x.cos^2x}\)
\(sin^4x+cos^4x-1=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-1\)
\(=-2sin^2x.cos^2x\)
\(\Rightarrow M=-2sin^2x.cos^2x.\frac{1}{sin^2x.cos^2x}=-2\)
Cho 0o < x < 90o, CM các biểu thức sau không phụ thuộc vào biến:
\(1.A=2\left(\sin^4x+\cos^4x+\sin^2x\cos^2x\right)^2-\left(\sin^8x+\cos^8x\right)\)
\(2.B=\left(\dfrac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
\(3.C=\left(\sin^4x+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
\(4.D=\dfrac{\tan^2x-\cos^2x}{\sin^2x}+\dfrac{\cot^2x-\sin^2x}{\cos^2x}\)
\(5.E=\dfrac{\cot^2x-\cos^2x}{\cot^2x}+\dfrac{\sin x\cdot\cos x}{\cot x}\)
câu 1 : ta có : \(A=\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-\left(sin^8x+cos^8x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-3sin^2x.cos^2x\right)\)
\(=\left(1-sin^2x.cos^2x\right)^2-\left(1-sin^2x.cos^2x\right)+2sin^2xcos^2x\)
\(=-sin^2x.cos^2x\left(1-sin^2x.cos^2x\right)+2sin^2x.cos^2x\)
\(=sin^2x.cos^2x\left(1+sin^2x.cos^2x\right)\)
tới đây mk xin sử dụng kiến thức lớp 10 một chút
\(=\dfrac{sin^22x}{4}\left(1+\dfrac{sin^22x}{4}\right)=\dfrac{sin^22x}{4}+\dfrac{sin^42x}{16}\)
vẩn phụ thuộc vào x \(\Rightarrow\) đề sai .
câu 1 : câu này bn có thể tìm trong trang của mk , mk nhớ đã làm nó rồi nhưng tìm hoài không đc . nếu đc bn có thể chờ mk đi hok về mk sẽ kiếm cho bn hoắc có thể là lm lại cho bn nha :)
câu 2 : https://hoc24.vn/hoi-dap/question/657072.html
câu 3 : https://hoc24.vn/hoi-dap/question/657069.html
câu 4 : https://hoc24.vn/hoi-dap/question/656635.html
câu 5 : https://hoc24.vn/hoi-dap/question/657071.html