I=(b2ac3)3x(1\(\frac{2}{3}\)c2b)2x(-b3)
Bài 1: Giải các phương trình sau:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
b) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
Bài 2: Giải các phương trình sau:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)
\(1a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(x=-\frac{1}{12}\)
Vậy ................
\(b,\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow\frac{5\left(7x-1\right)}{30}+\frac{30.2x}{30}=\frac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
Vậy ....................
Bài 1:
c) \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right).\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
\(\Leftrightarrow\frac{8.\left(x-2\right)^2}{8.3}-\frac{3.\left(2x-3\right).\left(2x+3\right)}{3.8}+\frac{4.\left(x-4\right)^2}{4.6}=0\)
\(\Leftrightarrow\frac{8.\left(x^2-4x+4\right)}{24}-\frac{3.\left(4x^2-9\right)}{24}+\frac{4.\left(x^2-8x+16\right)}{24}=0\)
\(\Rightarrow8.\left(x^2-4x+4\right)-3.\left(4x^2-9\right)+4.\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow8x^2-32x+32-\left(12x^2-27\right)+4x^2-32x+64=0\)
\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
\(\Leftrightarrow123-64x=0\)
\(\Leftrightarrow64x=123-0\)
\(\Leftrightarrow64x=123\)
\(\Leftrightarrow x=123:64\)
\(\Leftrightarrow x=\frac{123}{64}.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{123}{64}\right\}.\)
Chúc bạn học tốt!
Bài 1:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2-2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow x=12\)
Vậy phương trình có nghiệm là x = 12
Bài 1: Giải phương trình:
a) 11 - (2x + 3) = 3 (x - 4)
b) 5(2x - 3) - 4(5x - 7) = 19 - 2x
c) \(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
d) \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
e) \(\frac{2\left(1-3x\right)}{5}-\frac{2+3x}{10}=7-\frac{3\left(2x+1\right)}{4}\)
f) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
Bài 2: Giải phương trình sau bằng cách đưa về phương trình tích:
a) (x + 1)(x + 2)(x + 3) = 0
b) (x + 1)2 - 16 = 0
c) (2x - 1)2 = (x + 3)2
d) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
e) x2 - 5x + 6 = 0
f) 2x3 + 5x2 - 3x = 0
Các thầy cô giáo và bạn bè giúp em với ạ. Em cảm ơn !
Đừng bơ em, em tội nghiệp T^T ...
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
Bài 2:
a/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-3\end{matrix}\right.\)
b/
\(\left(x+1\right)^2-4^2=0\)
\(\Leftrightarrow\left(x+1-4\right)\left(x+1+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
c/
\(\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
B1 xét dấu các biểu thức
a f(x)=(1-2x) (2x2-5x+3)
b g(x)=\(\frac{-6x^3-19x^2-11x+6}{x^2-4x+3}\)
B2 giải bất phương trình
\(\frac{2-x}{x^3+x^2}>\frac{1-2x}{x^3-3x^2}\)
B3 Tìm tập xác định của hàm số y=\(\sqrt{\frac{1}{x^2+7x+6}-\frac{1}{x^2-2x+5}}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
giúp mình với
làm phép tính
c) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
d) x - 2 \(-\frac{x^2-10}{x+2}\)
e)\(\frac{1}{2x-2y}-\frac{1}{2x+2y}+\frac{y}{y^2-x^2}\)
g)\(\frac{4-2x+x^2}{x+2}-2-x\)
i)\(\frac{1}{2x+3}-\frac{1}{2x-3}+\frac{x-2}{2x^2-x-3}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)
B1. Tính giá trị: A=(x+2)^2 - (x-2)^2 với x=125
B2. Thu gọn:
a, 2x.(2x-1)^2 - 3x.(x+3).(x-3) - 4x.(x+1)^2
b. (3x+1)^2 - 2.(3x+1).(3x+5) + (3x+5)^2
B3: Tìm x biết (x+2)^2 - x^2 +4=0
b1
A=(125+2)2 - (125-2)2 = 1272 - 1232 = 1000
bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
bài 1
a \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{2x^2}{7x-10-x^2}\)=0
b\(\frac{2x+5}{x+3}-\frac{2x+2}{\left(x-1\right)\left(x+3\right)}=\frac{3x-1}{x-1}\)
c (2x-1)\(^2\)- (2x+1)\(^2\)=4(x-3)
a) Ta có: \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{2x^2}{7x-10-x^2}=0\)
\(\Leftrightarrow\frac{3x}{x-2}-\frac{x}{x-5}-\frac{2x^2}{x^2-7x+10}=0\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}-\frac{2x^2}{\left(x-5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow3x^2-15x-x^2+2x-2x^2=0\)
\(\Leftrightarrow-13x=0\)
\(\Leftrightarrow x=0\)
Vậy: x=0
c) Ta có: \(\left(2x-1\right)^2-\left(2x+1\right)^2=4\left(x-3\right)\)
\(\Leftrightarrow\left(2x-1+2x+1\right)\left(2x-1-2x-1\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow-8x-4x+12=0\)
\(\Leftrightarrow-12x+12=0\)
\(\Leftrightarrow x=\frac{-12}{-12}=1\)
Vậy: x=1
Dạng 1: Phương trình bậc nhất
Bài 1: Giải các phương trình sau :
a) 0,5x (2x - 9) = 1,5x (x - 5)
b) 28 (x - 1) - 9 (x - 2) = 14x
c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x
d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2
e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)
f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)
g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)
h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)
i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)
j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)
Dạng 2: Phương trình tích
Bài 2: Giải phương trình sau :
a) (x + 1) (5x + 3) = (3x - 8) (x - 1)
b) (x - 1) (2x - 1) = x(1 - x)
c) (2x - 3) (4 - x) (x - 3) = 0
d) (x + 1)2 - 4x2 = 0
e) (2x + 5)2 = (x + 3)2
f) (2x - 7) (x + 3) = x2 - 9
g) (3x + 4) (x - 4) = (x - 4)2
h) x2 - 6x + 8 = 0
i) x2 + 3x + 2 = 0
j) 2x2 - 5x + 3 = 0
k) x (2x - 7) - 4x + 14 = 9
l) (x - 2)2 - x + 2 = 0
Dạng 3: Phương trình chứa ẩn ở mẫu
Bài 3: Giải phương trình sau :
\(\frac{90}{x}-\frac{36}{x-6}=2\) | \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\) |
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) | \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) |
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) | \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\) |
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) | \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\) |
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)