5+(76/x^2-16)=(2x-1/x+4)-(3x-1/4-x)
D)5 + 76/x^2-16 = 2x-1/x+4 - 3x-1/4-x
imagine: Bạn dùng chỗ chữ M ngược ở phía trên đó, rồi viết lại đề nhé! Chứ viết vậy thì ra nhiểu kiểu đề lắm!
#Học tốt!
1)\(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
giải các phương trình sau:
a)x/2(x-3)+x/2(x+1)=2x/(x=1)(x-3)
b)5+76/x^2-16=2x-1/x+4-3x-1/4-x
khó gì fan gao bạc
\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
Giải pt
5+\(\dfrac{76}{x^2-16}\) = \(\dfrac{2x-1}{x+4}\) - \(\dfrac{3x-1}{4-1}\)
Bạn đọc cô gái đến từ hôm quả hả
5.( x+4).(x-4)+76=(2x-1).(x-4)+(3x-1).(x+4)
\(\left(x+4\right)\left(x-4\right)+76=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\\ \Leftrightarrow x^2-16+76=2x^2-x-8x+4+3x^2-x+12x-4\\ \Leftrightarrow x^2+60=5x^2+2x\\ \Leftrightarrow-4x^2-2x+60=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1+\sqrt{241}}{4}\\x=\dfrac{-1-\sqrt{241}}{4}\end{matrix}\right.\)
\(5.\left(x+4\right)\left(x-4\right)+76=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\\ \Leftrightarrow5\left(x^2-16\right)+76=2x^2-x-8x+4+3x^2-x+12x-4\\ \Leftrightarrow5x^2-80+76=5x^2+2x\\ \Leftrightarrow\left(5x^2-5x^2\right)-2x+\left(-80+76\right)=0\\ \Leftrightarrow-2x-4=0\\ \Leftrightarrow-2x=4\\ \Leftrightarrow x=-2\)
1) 168 - ( 18 - 2x ) x 12 = 120
2) [ 75 + ( 16 - x ) ] x 2 = 156
3) 124 - 24 x ( 3x - 16 ) = 76
4) [ ( 10 - x ) x 2 + 5 ] : 3 - 2 = 3
5) [ 80 + ( 62 - x ) ] : 17 - 7 = 1
6) 65 - ( 5x - 70 ) : 2 = 50
7) 504 : 9 136 - 2x ) + 4 = 32
8) ( 13x - 28 ) x 15 - 5 x 23 = 320
Mình cần gấp ạ !!!
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
14) Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{2x+4}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x+8}{2\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(x^2+x+x^2-3x-4x-8=0\)
\(\Leftrightarrow2x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x-4=0\)
a=1; b=-3; c=-4
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1\left(loại\right);x_2=\dfrac{-c}{a}=4\left(nhận\right)\)
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)
\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)
\(\Leftrightarrow-4x=9\)
hay \(x=-\dfrac{9}{4}\)
10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)
Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)
\(\Leftrightarrow5x^2-7x=0\)
\(\Leftrightarrow x\left(5x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)
12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)
Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2+3x-2x-3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
13) Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)