Những câu hỏi liên quan
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
MT
Xem chi tiết
NL
20 tháng 7 2021 lúc 12:58

a.

ĐKXĐ: \(x\ge3\)

(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó

Pt tương đương:

\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)

Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)

\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)

Pt vô nghiệm

Bình luận (0)
NL
20 tháng 7 2021 lúc 12:58

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)

Đặt \(\sqrt{2x+3}=t\ge0\) ta được:

\(t^2-t-\left(4x^2-6x+2\right)=0\)

\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)

Bình luận (0)
NL
20 tháng 7 2021 lúc 13:04

c.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

\(\Leftrightarrow2\left(x-2\right)^2-5\left(x-2\right)\sqrt{x+1}+2\left(x+1\right)=0\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{x+1}=b\end{matrix}\right.\) ta được:

\(2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=x-2\left(x\ge2\right)\\\sqrt{x+1}=2x-4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-4x+4\\x+1=4x^2-16x+16\end{matrix}\right.\) (\(x\ge2\))

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\) (đã loại nghiệm)

Bình luận (0)
NT
Xem chi tiết
NL
8 tháng 5 2021 lúc 14:18

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

Bình luận (0)
NT
Xem chi tiết
NQ
18 tháng 6 2016 lúc 10:01

a) (x- 2) (x-3-1) =0                     

 (x- 2) (x -4)=0

x-2 =0 hay x-4=0

x = 2  hay x=4

Bình luận (0)
D2
Xem chi tiết
KS
1 tháng 3 2019 lúc 19:31

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

Bình luận (0)
KS
1 tháng 3 2019 lúc 20:18

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

Bình luận (0)
KS
2 tháng 3 2019 lúc 16:30

\(2x^3-9x^2+2x+1\)

\(=2x^3-x^2-8x^2+4x-2x+1\)

\(=x^2\left(2x-1\right)-4x\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x-1\right)\)

\(=\left(2x-1\right)\left(x^2-4x+4-5\right)\)

\(=\left(2x-1\right)\left[\left(x-2\right)^2-5\right]\)

.......

Bình luận (0)
NL
Xem chi tiết

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

Bình luận (0)
 Khách vãng lai đã xóa
LH
9 tháng 10 2021 lúc 16:39

tl

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

^HT^

Bình luận (0)
 Khách vãng lai đã xóa
ND
9 tháng 10 2021 lúc 16:40

Ta thấy x=0 không là nghiệm của phương trình

chia cả 2 vế cho x^2 ta được:

PT <=> x^2-3x-6+3/x+1/(x^2)=0

       <=> (x^2-2+1/(x^2))-3(x-1/x)-4=0

      <=> (x-1/x)^2-3(x-1/x)-4=0

Đặt x-1/x=y

PT <=> y^2-3y-4=0

     <=> y=-4 hoặc y=1

Tại y=-4 , ta có x+1/x+4=0

                       <=> x^2+4x+1=0

                       <=> x=-2+ √3 hoăc x=-2-  √ 3

Tại y=1 ta có x^2-x-1=0

                 <=> x=(1- √  5)/2 hoặc x=(1+  √5)/2

Bình luận (0)
 Khách vãng lai đã xóa
KC
Xem chi tiết
MY
19 tháng 6 2021 lúc 17:55

ta có:

pt trên \(< =>x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(< =>\left[\left(x^2+6x\right)+1\right]^2=\left(2x+1\right)^2.\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+36x^2+2.\left(x^2+6x\right)+1=\left(4x^2+4x+1\right)\left(x^2+2x+3\right)\)

\(< =>x^4+12x^3+38x^2+12x+1=\)

\(4x^4+8x^3+12x^2+4x^3+8x^2+12x+x^2+2x+3\)

\(=4x^4+12x^3+21x^2+14x+3\)

\(< =>-3x^4+17x^2-2x-2=0\)

\(< =>-\left(x^2+2x-1\right)\left(3x^2-6x+2\right)=0\)

đến đây dễ rùi bạn tự giải nhé 

 

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
N2
20 tháng 5 2022 lúc 12:24

\(\text{Đ}K:x^2+2x+3\ge0\\ x^2+6x+1=\left(2x+1\right)\cdot\sqrt{x^2+2x+3}\\ \Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right)\cdot\sqrt{x^2+2x+3+4}\)

\(\text{ Đặt }\)\(m=\sqrt{x^2+2x+3};n=2x+1\) \(\text{ phương trình trở thành :}\)

\(m^2+2n=mn+4\\ \Leftrightarrow m^2-4-mn+2n=0\\ \Leftrightarrow\left(m-2\right)\left(m+2\right)-n\left(m-2\right)=0\\ \Leftrightarrow\left(m-2\right)\left(m-n-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m-n=-2\end{matrix}\right.\)

`\text{ Với}` \(m=2\\ \Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)

`\text{Với}`\(m-n=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\\ \Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\\ \Leftrightarrow x^2+2x+3=4x^2-4x+1\\ \Leftrightarrow3x^2-6x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{15}}{3}\left(N\right)\\x=\dfrac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)

Bình luận (3)
TA
Xem chi tiết
TL
14 tháng 5 2020 lúc 13:22

a) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

b) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)

\(\Rightarrow x+1=0\left(2x^2+x+5\ne0\forall x\right)\)

<=> x=-1

Vậy x=-1

Bình luận (0)
 Khách vãng lai đã xóa