Giải hpt: \(x^2\left(x^2-10\right)=-9\)
giải hpt: \(\left\{{}\begin{matrix}x+y=8\\\sqrt{x^2+9}+\sqrt{y^2+9}+10\end{matrix}\right.\)
`x+y=8<=>x=8-y`
`=>\sqrt{y^2-16y+64+8}+\sqrt{y^2+9}=10`
`<=>\sqrt{y^2-16y+72}=10-\sqrt{y^2+9}`
ĐK để bp 2 vế:`\sqrt{y^2+9}<=10<=>y^2<=91<=>`$\left[ \begin{array}{l}x \geq \sqrt{91}\\x \leq -\sqrt{91}\end{array} \right.$
`<=>y^2-16y+72=100+y^2+9-20\sqrt{y^2+9}`
`<=>20\sqrt{y^2+9}=16y+37`
ĐKBP:`y>=-37/16`
`<=>400(y^2+9)=196y^2+1369+1184y`
`<=>204y^2-1184y+2231=0`
`<=>y^2-296/51y+2231/204=0`
`\Delta≈(296/51)^2-2231/51`
`≈33,68-4311
`≈-10<0`
`=>` HPT vô nghiệm.
\(\sqrt{x^2+9}+\sqrt{y^2+9}\ge\sqrt{\left(x+y\right)^2+\left(2\sqrt{9}\right)^2}=10\)
Dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(\Rightarrow x=y=4\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(4;4\right)\)
giải hpt
\(\left\{{}\begin{matrix}9\left(x-1\right)+\left(2y-3\right)=-2\\3\left(x-1\right)-2\left(2x-3\right)=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9x-9+2y-3=-2\\3x-3-4x+6=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+2y=10\\-x+3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=5\end{matrix}\right.\)
Giải HPT: \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=5\\\left(x+y\right)\left(x^2-y^2\right)=9\end{cases}}\)
hệ pt <=> (x-y).(x^2+y^2) = 5
(x+y)^2.(x-y) = 9
+, Nếu x=y => hệ pt vô nghiệm [ vì 9 khác (x+y)^2.0 ]
=> x khác y
=> x-y khác 0
Chia vế theo vế của 2 pt trong hệ pt ta được :
x^2+y^2/(x+y)^2 = 5/9
<=> 9.(x^2+y^2) = 5.(x+y)^2
<=> 9.(x^2+y^2)-5.(x+y)^2 = 0
<=> 4x^2-10xy+4y^2 = 0
<=> (4x^2-8xy)-(2xy-4y^2) = 0
<=> (x-2y).(4x-2y) = 0
<=> (x-2y).(2x-y) = 0
<=> x=2y hoặc x=1/2.y
Đến đó bạn thay vào 1 trong 2 pt để giải nha
Tk mk nha
Giải HPT: \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=5\\\left(x+y\right)\left(x^2-y^2\right)=9\end{cases}}\)
\(\left\{{}\begin{matrix}\left(x+y\right)^2-\left(y^2-x\right)^3=6\left(x^2-x\right)-\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Help me giải hpt này với ạ
giải hpt: \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=10\\xy\left(x-1\right)\left(y-2\right)=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-x\right)+1+4\left(y^2-2y\right)+4=10\\\left(x^2-x\right)\left(y^2-2y\right)=-\dfrac{3}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-x=u\\y^2-2y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u+1+4v+4=10\\uv=-\dfrac{3}{2}\end{matrix}\right.\)
Chắc em tự giải được hệ này, chỉ cần thế là xong
giải hpt:
\(\left\{{}\begin{matrix}3\left(y^2+x^2\right)+\dfrac{1}{\left(x-y\right)^2}=2\left(10-xy\right)\\2x+\dfrac{1}{x-y}=5\end{matrix}\right.\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x^2+y^2\right)+2xy+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
Đặt \(a=x+y;b=x-y\)
\(\Rightarrow\left\{{}\begin{matrix}2a^2+b^2+\dfrac{1}{b^2}=20\\a+b+\dfrac{1}{b}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+\left(b+\dfrac{1}{b}\right)^2=22\\b+\dfrac{1}{b}=5-a\end{matrix}\right.\)
\(\Rightarrow2a^2+\left(a-5\right)^2=22\)
\(\)Đến đây thì dễ rồi tự làm nhé
1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Giải hpt:
\(\left\{\begin{matrix}\left(x+y\right)^4+13=6x^2y^2-10\\xy\left(x^2+y^2\right)=-1\end{matrix}\right.\)
Lời giải:
Đặt \(x^2+y^2=a,xy=b\) $(1)$
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} (a+2b)^2=6b^2+3\\ ab=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+4ab=2b^2+3\\ ab=-1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2=2b^2+7\\ ab=-1\end{matrix}\right.\). Thay \(b=\frac{-1}{a}\)
\(\Rightarrow a^2=\frac{2}{a^2}+7\Rightarrow a=\sqrt{\frac{7+\sqrt{57}}{2}}\) (do $a\geq 0$) \(\Rightarrow b=\frac{7-\sqrt{57}}{4}\sqrt{\frac{7+\sqrt{57}}{2}}\)
Thay vào $(1)$ suy ra HPT có nghiệm là:
\((x,y)\approx (0,228;-1,626),(-0,228;1,626),(-1,626;0,228),(1,626;-0,228)\)
P/s: Vẫn giải được nhưng số quá xấu. Có lẽ do bạn viết nhầm đề. Nhưng trên cơ bản cách giải vẫn như vậy.
Nguyễn Huy Thắng Akai Haruma Hoàng Thị Ngọc Anh Trần Việt Linh
Hoàng Lê Bảo Ngọc Hung nguyen Trương Hồng Hạnh Võ Đông Anh Tuấn .........................................................
@Võ Hồng Phúc coi cách giải của thằng @Akai Haruma nhưng phương trình dưới là -10 chứ không phải là -1 giải tau xem thử
răng số vẫn xấu