Những câu hỏi liên quan
LE
Xem chi tiết
TH
18 tháng 1 2021 lúc 12:19

Với m = 0 ta có hpt \(\left\{{}\begin{matrix}2y=1\\2x=-1\end{matrix}\right.\). HPT này không có nghiệm nguyên.

Xét \(m\neq 0\).

Để hpt có nghiệm duy nhất thì: \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\).

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.\Rightarrow\left(m^2-4\right)y=2m^2-3m-2\).

\(\Rightarrow y=\dfrac{2m^2-3m-2}{m^2-4}=\dfrac{2m+1}{m+2}\).

Từ đó ta có \(x=\dfrac{m+1-\dfrac{2\left(2m+1\right)}{m+2}}{m}=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\).

Vậy m là các số sao cho \(\dfrac{2m+1}{m+2}\) là số nguyên (Do \(\dfrac{2m+1}{m+2}-\dfrac{m-1}{m+2}=1\) là số nguyên).

 

Bình luận (0)
JV
Xem chi tiết
H24
10 tháng 2 2021 lúc 19:17

Tên vietjack mà không làm được thì mang tiếng người ta quá

Bình luận (5)
NC
10 tháng 2 2021 lúc 20:28

a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)

Hệ không thể có nghiệm duy nhất 

Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)

⇔ 3m - 2 > 1 - m

⇔ m > \(\dfrac{4}{3}\)

Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)

Bình luận (0)
LM
Xem chi tiết
H24
Xem chi tiết
NT
26 tháng 1 2024 lúc 22:32

Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m}\ne\dfrac{-1}{1}=-1\)

=>\(m\ne-2\)

\(\left\{{}\begin{matrix}2x-y=1\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y+mx+y=6\\2x-y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m+2\right)=6\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{m+2}\\y=2\cdot\dfrac{6}{m+2}-1=\dfrac{12}{m+2}-1=\dfrac{12-m-2}{m+2}=\dfrac{-m+10}{m+2}\end{matrix}\right.\)

Để x>0 và y<0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>0\\\dfrac{-m+10}{m+2}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m+2>0\\\dfrac{m-10}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\\left[{}\begin{matrix}m>10\\m< -2\end{matrix}\right.\end{matrix}\right.\)

=>m>10

Bình luận (0)
ND
Xem chi tiết
H24
9 tháng 3 2023 lúc 17:28

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

Bình luận (1)
JV
Xem chi tiết
H24
Xem chi tiết
TM
23 tháng 1 2024 lúc 21:46

\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)

Theo đề: \(x^2-2y-1=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).

Vậy: \(m=1.\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 1 2024 lúc 23:43

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)

=>\(5⋮m+2\)

=>\(m+2\in\left\{1;-1;5;-5\right\}\)

=>\(m\in\left\{-1;-3;3;-7\right\}\)

Bình luận (0)
TP
Xem chi tiết
NT
9 tháng 1 2024 lúc 19:54

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

Bình luận (0)