Chứng tỏ rằng: m2- 6m+ 15 > 0 với mọi m
Cho phương trình x + 2 x - 1 - m 2 + 6m - 11 = 0. Chứng minh rằng phương trình có nghiệm với mọi giá trị của m.
bài 1 : Cho hàm số y=(m2-4m+3)x2
Tìm x để :
a, Hàm số đồng biến với x>0
b, hàm số nghịch biến với x>0
Bài 2 cho hàm số y=(m2-6m+12)x2
a, chứng tỏ rằng hàm số nghịch biến khi x<0 và đồng biến khi x>0
b,Khi m=2 tìm x để y=-2
c,khi m =5 tính giá trị của y biết x=1+căn 2
d, tìm m khi x=1 và y = 5
Cho pt: x^2 +2(m-1)x-6m-7=0.(1)
a) Chứng minh rằng với mọi giá trị của m thì pt(1) luôn có hai nghiệm phân biệt.
b)Gọi x1,x2 là 2 nghiêm của phương trình:x^2 +2(m-1)x-6m-7=0. Tìm các giá trị của m để: x1(x1+3/2)+x2(x2+3/2x1)=15.
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
Cho phương trình
\(x^2-\left(5m-1\right)x+6m^2-2m=0\)0
Chứng tỏ pt luôn có nghiệm với mọi m
Xét \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0,\forall m\)
=> Phương trình luôn có nghiệm với mọi m.
1) y= (m^2 +1)x + 2020 chứng tỏ hàm số là hàm số bậc nhất với mọi m
2) Y= (m^2 + 1)x + 2020 chứng tỏ hàm số đồng biến với mọi m
a.
Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m
b.
\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m
Cho phương trình 9 x 2 + 2 ( m 2 - 1 ) x + 1 = 0 . Chứng tỏ rằng với m > 2 phương trình có hai nghiệm phân biệt âm.
chứng tỏ rằng M = x^2 - x +1 >0 với mọi x
\(M=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) mà \(\left(x-\frac{1}{2}\right)^2\) luôn \(\ge0\) với mọi \(x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Cho phương trình
\(x^2-\left(5m-1\right)x+6m^2-2m=0\)0
x là ẩn số
Chứng tỏ phương trình luôn có nghiệm với mọi m
\(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)
Vậy PT luôn có nghiệm với mọi m
chứng minh rằng phương trình (m2+m+4)x2017 -2x+1=0 luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m
Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=1>0\)
\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)
Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m