Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Cho phương trình : x2 – (m + 1)x + 2m - 3 = 0
a) + Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Cho phương trình: \(x^2-\left(m+1\right)x+2m-3=0\)
a) Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m
b)Tìm giá trị của m để phương trình (1) có nghiệm bằng 3
Bài 4:Cho phương trình ẩn x: x2 - (m + 3)x + m = 0
a) Chứng minh rằng với mọi giá trị của m phương trình (1) luôn có 2 nghiệm phân biệt.
b) Tìm m để phương trình có 2 nghiệm Phân biệt x1, x2 thỏa mãn hệ thức:
x12 + x22 = 6
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình ( ẩn x ): x mũ 2 + 2(m+2)x +4m - 1= 0 (1)
a, giải phương trình (1) khi m=2
b, chứng minh rằng với mọi giá trị của m, phương trình (1) luôn có hai nghiệm phân biệt. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) không phụ thuộc vào m
Cho phương trình ẩn x: x^2 – (5m – 1)x + 6m^2 – 2m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
b) Gọi x1, x2 là các nghiệm của (1). Tìm m để x1^2 + x2^2 = 1
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
Chứng minh rằng phương trình \(x^2\)– 2(m + 4)x + 2m + 6 = 0 luôn có nghiệm với mọi giá trị của m.