Chứng minh rằng: AD=BC
Cho điểm A nằm ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC. a) Chứng minh rằng OA vuông góc với BC tại H. b) Gọi E là giao điểm của AD và (O) ( E khác D). Chứng minh rằng AE.AD = AH.AOb) Gọi E là giao điểm của AD và (O) ( E khác D). Chứng minh rằng AE.AD = AH.AO c) Qua O vẽ đường thẳng vuông góc với AD tại K và cắt đường thẳng BC tại F. Chứng minh rằng FD là tiếp tuyến của (O).d) Gọi I là trung điểm của AB, qua I vẽ đường thẳng vuông góc với OA tại M và đường thẳng này cắt DF tại N. Chứng minh rằng NA=ND
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
ma OB=OC
nên OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đo: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
Cho (O) và (O') cắt nhau tại A và B. Vẽ dây AC của (O) tiếp xúc (O'). Vẽ dây AD của (O') tiếp xúc (O). Chứng minh:
a, \(AB^2=BC\cdot BD\)
b, \(\frac{BC}{BD}=\frac{AC^2}{AD^2}\)
Cho \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) lần lượt có nghiệm \(x_1\) và \(y_1\). Chứng minh rằng nếu ad = bc (a, b, c, d ≠ 0) thì \(x_1=y_1\).
Do \(x_1,y_1\) lần lượt là các nghiệm của \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) nên ta có \(ax_1+b=cy_1+d=0\) (*)
Mặt khác, \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\). Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\) thì suy ra \(a=kb;c=kd\). Thay vào (*), ta có \(kbx_1+b=kdy_1+d=0\) \(\Leftrightarrow b\left(kx_1+1\right)=d\left(ky_1+1\right)=0\) \(\Leftrightarrow kx_1+1=ky_1+1=0\) (do \(b,d\ne0\)) \(\Leftrightarrow x_1=y_1\) (đpcm)
Hình thang ABCD có đáy AB,CD
a) Cho biết AD // BC. Chứng minh rằng AD = BC, AB = CD
b ) Cho biết AB = CD. Chứng minh rằng AD // với BC, AD = BC
* ?2 ( SGK/70 )
a) Kẻ đoạn thẳng AC.
Ta có: AB // CD (ABCD là hình thang)
Xét \(\Delta ABC\) và \(\Delta DCA\), có:
\(\widehat{BAC} = \widehat{ACD}\) (hai góc so le trong, AB//CD)
AC là cạnh chung
\(\widehat{DAC} = \widehat{BCA}\) (hai góc so le trong, AD // BC)
Vậy \(\Delta ABC=\Delta CDA\) (g.c.g)
\(\Rightarrow AD=BC;AB=CD\) (ĐPCM)
b) Xét \(\Delta ADC\) và \(\Delta CBA\), có:
AB = CD (gt)
\(\widehat{BAC} = \widehat{ACD}\) ((hai góc so le trong, AB//CD)
AC là cạnh chung
\(\Rightarrow\Delta ADC=\Delta CBA\) (c.g.c)
\(\Rightarrow\) \(\widehat{DAC} = \widehat{BCA}\) (hai góc tương ứng), mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AD // BC
Ta có: \(\Delta ADC=\Delta CBA\) \(\Rightarrow\) AD = BC (hai cạnh tương ứng)
Vậy AD // BC, AD = BC (đpcm)
Cho (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B) . Lấy điểm D thuộc dây BC ( D khác B, C). Tia AD cắt cung nhỏ BC tại E , tia AC cắt tia BE tại F.
a) Chứng Minh rằng FCDE nội tiếp đường tròn,
b) Chứng minh rằng DA.DE = DB.DC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác FCDE , chứng minh rằng IC là tiếp tuyến của (O).
a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )
xét tứ giác FCDE có góc FCD+FED=90°+90°=180°
suy ra FCDE nội tiếp
b,xét hai tam giác CED và ABD có
góc CDE=ADB( đđ )
góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)
suy ra hai tam giác đó đồng dạng
suy ra DE/DB=DC/AD
suy ra DE.DA=DB.DC(đpcm)
c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)
góc CED=CBA( góc nội tiếp chắn cung CA)(2)
góc CDF=DCI( tam giác CID cân tại I)(3)
góc OCB=CBO( tam giác OCB cân tại O)(4)
từ 1,3 suy ra góc CEF=DCI(5)
từ2,4 suy ra OCB=CEA(6)
mà góc CEF+CEA=90°(7)
từ 5,6,7 suy ra góc DCI+OCB=90°
suy ra CI là tiếp tuyến của (O)(đpcm)
a: góc ACB=góc AEB=1/2*180=90 độ
=>CB vuông góc FA,AE vuông góc FB
góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có
góc CDA=góc EDB
=>ΔDCA đồng dạng với ΔDEB
=>DC/DE=DA/DB
=>DA*DE=DB*DC
Có mấy bài bất đẳng thức, bạn nào làm được câu nào thì làm nhé
a) Cho \(a,b,c,d>0\)
Chứng minh rằng : \(ab+dc+cd+ad\le\frac{\left(a+b+c+d\right)^4}{4}\)
b) Cho \(x,y\in R^+\)thỏa mãn \(x+y=2\)
Chứng minh : \(x^2y^2\left(x^2+y^2\right)\le2\)
c) Cho \(a,b,c\in R^+\)tùy ý
Chứng minh rằng : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
a/ Đề sai (ko nói đến chuyện nhầm lẫn ở hạng tử thứ 2 lẽ ra là bc), bạn cho \(a=b=c=d=0,1\) là thấy vế trái lớn hơn vế phải
b/ \(\frac{1}{2}xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^6}{32}=\frac{64}{32}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
c/ Bình phương 2 vế:
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
Ta có: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\) ; \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\); \(\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}\ge2a^2\)
Cộng vế với vế:
\(2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow...\)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 1: Hình thang vuông ABCD có A = D = \(90^0\); DC = 2AB = BC. Tính các góc ABC.
Bài 2: Cho hình thang ABCD có AB // CD. Trong đó 2 đường phân giác của các góc C và D cắt nhau tại điểm I nằm trên đáy AB. Chứng minh rằng tổng độ dài 2 cạnh bên = 1 đáy hình thang.
Bài 3: Cho hình thang ABCD có AB // CD; AB < DC; BC > AD
a) Chứng minh rằng AD + BC > DC - AB
b) Chứng minh rằng DC - AB > BC - AD
c) Chứng minh rằng AC + BD > DC + AB
a/ Xét t/g OAD và t/g OBC cos
AO = OB
\(\widehat{xOy}\) : chung
OD = OC
=> t/g OAD = t/g OBC
=> AD = BC
b/ Không rõ đề.
c/ Có
OC = ODOA = OB
=> AC = BD
Có \(\widehat{OAD}=\widehat{OBE}\) (do t/g OAD = t/g OBC)
=> \(180^o-\widehat{OAD}=180^o-\widehat{OBE}\)
=> \(\widehat{CAD}=\widehat{CBD}\)
Xét t/g AEC và t/g BED có
\(\widehat{CAD}=\widehat{CBD}\)
AC = BD\(\widehat{OCB}=\widehat{ODA}\)
=> t/g AEC = t/g BED (g.c.g)
=> AE = BE
Xét t/g OAE và t/g OBE có
OA = OB
AE = BEOE : chung
=> t/g OAE = t/g OBE
=> ^xOE = ^yOe
=> OE là pg góc xOy
Cho ta giác ABC ( AB<AC). Trên nửa mặt phẳng bờ BC ko chứa điểm A. Cho tia Cx song song với AB. Trên tia Cx lấy D sao cho CD=AB
a) chứng minh aC=DB, AC//DB
b) Nối AD cắt Bc tại O. Chứng minh rằng O là trung điểm của BC và AD
c) Từ B kẻ BH vuông góc với AD (H thuộc AD). Từ c kẻ CK vuông góc với AD( k thuộc AD). Chứng minh tam giác ABH= tam giác DCK
Cho tam giác ABC có M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD a) Chứng minh rằng A AMD= ACMB b) Chứng minh rằng AB // CD c) Vẽ tia CN 1 AD (N e AD) và API BC (Pe BC). Chứng minh rằng ND = BP d) Chứng minh rằng N, M, P thẳng hàng
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD