giúp em câu b với ạ em đang cần gấp
giúp em câu b với ạ em đang cần gấp
từ một điểm m ở ngoài đường tròn (o),vẽ hai tiếp tiến ma,mb với đường tròn.trên tia ob lấy điểm c sao cho bc=bo.Chúng minh bmc=1/2 bma em cần gấp ạ giúp em với!!!
cho đường tròn(o;r) và một điểm a nằm ngoài đường tròn vẽ các tiếp tuyến ab,ac.chứng minh bac=60 khi và chỉ khi ao=2r
Câu C chứng minh đồng qui làm s vậy ạ🙏🏻
Cho (0) đường kinh AB,lấy M là 1 điểm thuộc (0) a) chứng minh tam giác AMB vuông b) Tiếp tuyến tại A của (0) cách BM tại K Gọi D là trang điểm của AK .chứng minh DM là tiếp tuyến của (0). c) Tiếp tuyến tại B của (0) cài DM tại E. Tính AD.BE theo R
a.
Do AB là đường kính \(\Rightarrow\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{AMB}=90^0\Rightarrow\Delta AMB\) vuông tại M
b.
\(\widehat{AMK}=180^0-\widehat{AMB}=90^0\Rightarrow\Delta AMK\) vuông tại M
\(\Rightarrow MD\) là trung tuyến ứng với cạnh huyền
\(\Rightarrow MD=AD\)
Xét hai tam giác OAD và OMD có: \(\left\{{}\begin{matrix}OA=OM=R\\AD=MD\left(cmt\right)\\OD\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAD=\Delta OMD\left(c.c.c\right)\)
\(\Rightarrow\widehat{OMD}=\widehat{OAD}=90^0\)
\(\Rightarrow DM\) là tiếp tuyến của (O).
c.
E là giao điểm 2 tiếp tuyến tại B và M \(\Rightarrow EM=EB\)
Mà \(OM=OB=R\Rightarrow OE\) là trung trực BM
\(\Rightarrow OE\) đồng thời là phân giác \(\widehat{BOM}\) hay \(\widehat{MOE}=\dfrac{1}{2}\widehat{BOM}\)
Tương tự ta có OD là phân giác \(\widehat{AOM}\Rightarrow\widehat{DOM}=\dfrac{1}{2}\widehat{AOM}\)
\(\Rightarrow\widehat{MOE}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{BOM}+\widehat{AOM}\right)\)
\(\Rightarrow\widehat{DOE}=\dfrac{1}{2}.180^0=90^0\)
Hay tam giác DOE vuông tại O
Áp dụng hệ thức lượng với đường cao OM:
\(DM.ME=OM^2\Leftrightarrow AD.BE=R^2\)
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
Đề bài sai nhiều quá, em kiểm tra lại câu a là ON hay MN, và câu b là ON hay MN?
a.
Ta có: \(KM=KN\) (t/c hai tiếp tuyến cắt nhau)
\(OM=ON=R\)
\(\Rightarrow OK\) là trung trực của MN, hay \(OK\perp MN\)
b.
Có \(\widehat{KMN}=\widehat{KNM}\) (do \(\Delta KMN\) cân tại K)
\(\widehat{KNM}=\widehat{HMN}\) (cùng phụ \(\widehat{HNM}\))
\(\Rightarrow\widehat{KMN}=\widehat{HMN}\)
\(\Rightarrow MN\) là phân giác \(\widehat{HMK}\)
c.
Kéo dài IM và NK cắt nhau tại A
Theo câu ta có \(OK\perp MN\Rightarrow OK||IA\) (cùng vuông góc MN)
Mà O là trung điểm IN \(\Rightarrow K\) là trung điểm AN
Hay \(KA=KN\) (1)
Do \(MH||AN\) (cùng vuông góc IN), áp dụng định lý Talet trong tam giác KIN:
\(\dfrac{IQ}{IK}=\dfrac{QH}{KN}\) (2)
Áp dụng định lý Talet trong tam giác AIK:
\(\dfrac{IQ}{IK}=\dfrac{QM}{KA}\) (3)
(1);(2);(3) \(\Rightarrow QH=QM\)
Cho nửa đường tròn(O,R)có đường kính AB. Lấy điểm M bất kỳ sao cho MA
Từ điểm A nằm ngoài (O, R) về tiếp tuyến AB, dây cung BC vuông góc ĐA tại H. a) Chứng minh AC là tiếp tuyển (O). b) Vẽ đường kinh BD của (O), AD cắt (O) tại K. Chứng minh AH IAO = AKA . Câu 8: Cho đường tròn (O; R) , đường kính AB Vẽ dây AC sao cho CAB = 30 deg Trên tia đối của tia BA lấy điểm M sao cho BM = R Chúng mình rằng: c) MC là tiếp tuyến của (O). d) M * C ^ 2 = 3R ^ 2 mọi người ơi giúp em với em cần gấp ạ
Bài 1:
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
=>\(\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBKD nội tiếp
BD là đường kính
Do đó: ΔBKD vuông tại K
=>BK\(\perp\)KD tại K
=>BK\(\perp\)AD tại K
Xét ΔABD vuông tại B có BK là đường cao
nên \(AK\cdot AD=AB^2\left(1\right)\)
Xét ΔABO vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)
Câu 8:
a: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CBA}=60^0\)
Xét ΔOBC có OB=OC và \(\widehat{OBC}=60^0\)
nên ΔOCB đều
=>BC=OB=R
=>BO=BM=R
=>B là trung điểm của OM
Xét ΔOCM có
CB là đường trung tuyến
CB=1/2OM
Do đó: ΔOCM vuông tại C
b: Ta có: OB+BM=OM
=>OM=R+R=2R
Ta có: ΔOCM vuông tại C
=>\(OC^2+CM^2=OM^2\)
=>\(CM^2=\left(2R\right)^2-R^2=3R^2\)
Cho (O), hai dây cung MN//EF ( sắp xếp trên đườn gtronf theo thứ tự M,N,F,E)
a,Chứng minh MNFE là hình thang cân
b,Gọi MF cắt NE tại I. Chúng minh rằng OI vuông góc MN
a: Xét tứ giác MNFE có MN//FE
nên MNFE là hình thang
=>\(\widehat{MNF}+\widehat{NFE}=180^0\)(1)
Xét (O) có
M,N,F,E cùng thuộc (O)
nên MNFE là tứ giác nội tiếp
=>\(\widehat{MNF}+\widehat{MEF}=180^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MEF}=\widehat{NFE}\)
Hình thang MNFE có \(\widehat{MEF}=\widehat{NFE}\)
nên MNFE là hình thang cân
b: Xét (O) có
MN,EF là các dây
MN=EF
Do đó: \(sđ\stackrel\frown{ME}=sđ\stackrel\frown{NF}\)
Xét (O) có
\(\widehat{FMN}\) là góc nội tiếp chắn cung NF
\(\widehat{MNE}\) là góc nội tiếp chắn cung ME
\(sđ\stackrel\frown{ME}=sđ\stackrel\frown{NF}\)
Do đó: \(\widehat{FMN}=\widehat{MNE}\)
=>\(\widehat{IMN}=\widehat{INM}\)
=>ΔIMN cân tại I
=>IM=IN
=>I nằm trên đường trung trực của MN(3)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra OI là đường trung trực của MN
=>OI\(\perp\)MN
Cho đường tròn (O;3 cm), dây AB dài 4,8 cm, qua O kẻ tia Ox vuông góc với AB tại H trên tia Ox lấy điểm C sao cho OC = 5 cm a) Tính độ dài các đoạn thẳng OH và HC? b) Chứng minh AC là tiếp tuyến của (O)? c) Trên cung nhỏ AB lấy điểm D. Qua D vẽ tiếp tuyến với (O) cắt AC, BC theo thứ tự là E và F. Tính chu vi tam giác CEF
a: Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>\(HA=HB=\dfrac{AB}{2}=2,4\left(cm\right)\)
Ta có: ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=3^2-2,4^2=3,24\)
=>\(OH=\sqrt{3,24}=1,8\left(cm\right)\)
OH+HC=OC
=>HC=OC-OH=5-1,8=3,2(cm)
b: Ta có: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=2,4^2+3,2^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔAOC có \(AO^2+AC^2=OC^2\)
nên ΔAOC vuông tại A
=>CA\(\perp\)OA tại A
=>CA là tiếp tuyến của (O)
b: Xét ΔCAB có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAB cân tại C
=>CA=CB
Xét ΔOAC và ΔOBC có
OA=OB
AC=BC
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
Xét (O) có
EA,ED là các tiếp tuyến
Do đó: EA=ED
Xét (O) có
FD,FB là các tiếp tuyến
Do đó: FD=FB
Chu vi tam giác CEF là:
\(CE+EF+CF\)
=CE+ED+DF+CF
=CE+EA+CF+FB
=CA+CB
=2CA
=8(cm)