Bài 2: Hình thang

YK

Hình thang ABCD có đáy AB,CD
a) Cho biết AD // BC. Chứng minh rằng AD = BC, AB = CD
b ) Cho biết AB = CD. Chứng minh rằng AD // với BC, AD = BC

* ?2 ( SGK/70 )

QN
22 tháng 8 2017 lúc 21:49

a) Kẻ đoạn thẳng AC.
Ta có: AB // CD (ABCD là hình thang)
Xét \(\Delta ABC\)\(\Delta DCA\), có:
\(\widehat{BAC} = \widehat{ACD}\) (hai góc so le trong, AB//CD)

AC là cạnh chung

\(\widehat{DAC} = \widehat{BCA}\) (hai góc so le trong, AD // BC)

Vậy \(\Delta ABC=\Delta CDA\) (g.c.g)
\(\Rightarrow AD=BC;AB=CD\) (ĐPCM)

b) Xét \(\Delta ADC\)\(\Delta CBA\), có:
AB = CD (gt)
\(\widehat{BAC} = \widehat{ACD}\) ((hai góc so le trong, AB//CD)

AC là cạnh chung
\(\Rightarrow\Delta ADC=\Delta CBA\) (c.g.c)

\(\Rightarrow\) \(\widehat{DAC} = \widehat{BCA}\) (hai góc tương ứng), mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) AD // BC

Ta có: \(\Delta ADC=\Delta CBA\) \(\Rightarrow\) AD = BC (hai cạnh tương ứng)
Vậy AD // BC, AD = BC (đpcm)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NQ
Xem chi tiết
BT
Xem chi tiết
KN
Xem chi tiết
AN
Xem chi tiết
PO
Xem chi tiết
VA
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết