Những câu hỏi liên quan
SK
Xem chi tiết
H24
14 tháng 4 2017 lúc 14:18

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

Bình luận (0)
BV
3 tháng 5 2017 lúc 14:10

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

Bình luận (0)
BV
3 tháng 5 2017 lúc 14:42

c) \(mx^2+\left(2m-1\right)x+m-2=0\)
- Với m = 0 phương trình trở thành:
\(0.x^2+\left(2.0-1\right)x+0-2=0\)\(\Leftrightarrow-x-2=0\)\(\Leftrightarrow x=-2\)
- Xét \(m\ne0\)
\(\Delta=\left(2m-1\right)^2-4m.\left(m-2\right)=4m+1\)
Nếu \(4m+1>0\Leftrightarrow m>\dfrac{-1}{4}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\);
\(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
Nếu \(4m+1=0\Leftrightarrow m=\dfrac{-1}{4}\) phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-1\right)}{2m}=\dfrac{-\left(2.\dfrac{-1}{4}-1\right)}{2.\dfrac{-1}{4}}=-3\)
Nếu \(4m+1< 0\Leftrightarrow m< \dfrac{-1}{4}\) phương trình vô nghiệm.
Biện luận:
\(m=0\) phương trình có một nghiệm là x = -2.
\(m\ge\dfrac{-1}{4}\)\(m\ne0\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-1\right)+\sqrt{4m+1}}{2m}\); \(x_2=\dfrac{-\left(2m-1\right)-\sqrt{4m+1}}{2m}\)
\(m\le\dfrac{-1}{4}\) phương trình có nghiệm kép:\(x_1=x_2=3\)

Bình luận (0)
XH
Xem chi tiết
SK
Xem chi tiết
BV
5 tháng 5 2017 lúc 14:23

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

Bình luận (0)
BV
5 tháng 5 2017 lúc 14:27

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

Bình luận (0)
BV
5 tháng 5 2017 lúc 14:45

c) Th1: \(m+1=0\)\(\Leftrightarrow m=-1\).
Thay \(m=-1\) vào phương trình ta được:
\(-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\).
Th2: \(m+1\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m+2\right)=-24m+1\).
- \(\Delta=0\)\(\Leftrightarrow-24m+1=0\)\(\Leftrightarrow m=\dfrac{1}{24}\). Khi đó phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-3\right)}{2\left(m+1\right)}=-\dfrac{2.\dfrac{1}{24}-3}{2.\left(\dfrac{1}{24}+1\right)}=-\dfrac{7}{5}\).
- \(\Delta< 0\)\(\Leftrightarrow-24m+1< 0\)\(\Leftrightarrow m>\dfrac{1}{24}\). Khi đó phương trình vô nghiệm.
- \(\Delta>0\Leftrightarrow m< \dfrac{1}{24}\). Khi đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\)
\(x_2=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
​Biện luận:
​- Với \(m=-1\) phương trình có duy nhất nghiệm \(x=\dfrac{1}{5}\).
​- Với \(m=\dfrac{1}{24}\) phương trình có nghiệm kép: \(x_1=x_2=-\dfrac{7}{5}\).
​- Với \(m>\dfrac{1}{24}\) phương trình vô nghiệm.
​- Với \(m< \dfrac{1}{24}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\); \(x_1=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).

Bình luận (0)
NV
Xem chi tiết
DW
Xem chi tiết
NT
8 tháng 10 2022 lúc 20:02

Bài 2: 

a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)

=>x^2-3x+2=0

=>x=2 hoặc x=1

b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)

Để phương trình có nghiệm thì \(\text{Δ}>=0\)

=>1-4m>=0

=>m<=1/4

Để phương trình vô nghiệm thì Δ<0

=>m>1/4

c: TH1: m=1

=>-2x+2=0

=>x=1

TH2: m<>1

\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)

\(=4+8m\left(m-1\right)\)

\(=8m^2-8m+4\)

Để phương trình có nghiệm thì Δ>=0

=>\(m\in R\)

 

Bình luận (0)
NB
Xem chi tiết
HN
25 tháng 2 2016 lúc 9:08

\(x^2-\left(3m-2\right)x+2m\left(m-2\right)<0\) (1)

Tam thức bậc hai ở (1) luôn có hai nghiệm \(x_1=2m\)

và \(x_2=m-2\) với mọi \(m\in R\) Từ đó ta có 

- Khi 2m<m-2 hay m<-2 thì (1) có nghiệm 2m<x<m-2

- Khi 2m=m-2 hay m=-2 thì (1) vô nghiệm 

- Khi 2m>m-2 hay m>-2 thì (1) có nghiệm m-2<x<2m

Bình luận (0)
NT
Xem chi tiết
MS
Xem chi tiết
SK
Xem chi tiết
H24
2 tháng 4 2017 lúc 21:53

a) ⇔ (m – 3)x = 2m + 1.

Nếu m ≠ 3 phương trình có nghiệm duy nhất x = . Nếu m = 3 phương trình trở thành 0x = 7. Vô nghiệm.

b) ⇔ (m2 – 4)x = 3m – 6.

Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2, có nghiệm x = . Nếu m = 2, phương trình trở thành 0x = 0, mọi x ∈ R đều nghiệm đúng phương trình. Nếu m = -2, phương trình trở thành 0x = -12. Vô nghiệm.

c) ⇔ 2(m – 1)x = 2(m-1).

Nếu m ≠ 1 có nghiệm duy nhất x = 1. Nếu m = 1 mọi x ∈ R đều là nghiệm của phương trình.


Bình luận (0)