Cho \(a,b>0\) thoả \(a+b=4\). Chứng minh:
\(a^2b^2\left(a^2+b^2\right)\text{≤}128\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Choa,b là hai số thực dương thoả mãn (2a-1)(2b-1)=1 Chứng minh rằng \(\dfrac{1}{a^4+b^2\left(1+2a\right)}+\dfrac{1}{b^4+a^2\left(1+2B\right)}\le\dfrac{1}{2}.\)
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Cho ba số a, b, c khác 0 thoả mãn điều kiện: a + b + c = \(\frac{1}{abc}\)
Chứng minh rằng : \(\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\left(a+b\right)^2\)
Cảm ơn mọi người nhiều ! ^.^
\(a+b+c=\frac{1}{abc}\)\(\Leftrightarrow\)\(abc^2=1-abc\left(a+b\right)\)
\(\Leftrightarrow\)\(a^2b^2c^4=1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2\)
\(VT=\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\frac{1+a^2c^2+b^2c^2+a^2b^2c^4}{c^2+a^2b^2c^2}\)
\(=\frac{1+c^2\left(a^2+b^2\right)+1-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)
\(=\frac{2+c^2\left(a+b\right)^2-2abc^2-2abc\left(a+b\right)+a^2b^2c^2\left(a+b\right)^2}{c^2+a^2b^2c^2}\)
\(=\frac{2-2abc\left(a+b+c\right)}{c^2+a^2b^2c^2}+\frac{\left(a+b\right)^2\left(c^2+a^2b^2c^2\right)}{c^2+a^2b^2c^2}\)
\(=\frac{2-2abc.\frac{1}{abc}}{c^2+a^2b^2c^2}+\left(a+b\right)^2=\left(a+b\right)^2=VP\) ( đpcm )
PS : sorry for late :'<
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
Cho \(f\left(x\right)=ax^2+bx+c\) (a ,b,c là các số thực )
a) Biết 10a+2b-5c=0 . Chứng minh\(f\left(-1\right).f\left(-4\right)\ge0\)
b) Biết 13a + b + 2c=0 . Chứng minh \(f\left(-2\right).f\left(3\right)\le0\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
a, cho a, b là 2 số thoả mãn |a-2b+3|\(^{2023}\) + (b-1)\(^{2024}\) = 0. Tính giá trị biểu thức
P = a\(^{2023}\) x b\(^{2024}\) + 2024
b, 3 số hữu tỉ x,y,z thoả mãn xy+yz+zx = 2023. Chứng tỏ rằng:
A = \(\dfrac{\left(x^2+2023\right)x\left(y^2+2023\right)x\left(z^2+2023\right)}{16}\) viết được dưới dạng bình phương của 1 số hữu tỉ
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
Cho \(a,b,c>0\). Chứng minh \(\dfrac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(b^3+1\right)}\le2\)
\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)
\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)
Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)
Ta có: \(b^3+2-b\ge3b-b=2b>0\)
\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)
\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)
\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)
Cho a,b,c là 3 số dương thoả mãn ab+ac+bc=3.Chứng minh rằng
\(4\left(a^2+b^2+c^2\right)+9a^2b^2c^2\ge21\)
\(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(3u;3v^2;w^3\right)\text{and}\left(u^2=tv^2\right)\)
BDT can chung minh la \(4\cdot3\left(9u^2-6v^2\right)3^2v^4+9w^6\cdot3^3\ge21\cdot3^3v^6\)
\(\Leftrightarrow3w^6\ge7v^6-4\left(3u^2-2v^2\right)v^4\)\(\Leftrightarrow3w^6\ge15v^6-12v^4u^2\)
\(\Leftrightarrow w^6\ge5v^6-4v^4u^2\)\(\Leftrightarrow w^3\ge\sqrt{5v^6-4v^4u^2}\)
Ta co BDT \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)
\(\Leftrightarrow6uv^2w^3+3u^2v^4-4v^6+4u^3w^3\ge w^6\)
\(\Leftrightarrow3uv^2-2u^3-2\sqrt{\left(u^2-v^2\right)^3}\le w^3\)
\(t\ge\frac{5}{4}\)Ta co \(w^3\le3uv^2-2u^3+2\sqrt{\left(u^2-v^2\right)^3}\) luon dung
\(1\le t\le\frac{5}{4}\) thi ta can cm BDT \(3uv^2-2u^3-2\sqrt{\left(u^2-v^2\right)^3}\ge\sqrt{5v^6-4v^4u^2}\)
\(\Leftrightarrow3uv^2-2u^3\ge\sqrt{5v^6-4v^4u^2}+2\sqrt{\left(u^2-v^2\right)^3}\)
\(\Leftrightarrow\left(3uv^2-2u^3\right)^2\ge\left(\sqrt{5v^6-4v^4u^2}+2\sqrt{\left(u^2-v^2\right)^3}\right)^2\)
\(\Leftrightarrow t(3-2t)^2\ge\left(2\sqrt{(t-1)^3}+\sqrt{5-4t}\right)^2\)
\(\Leftrightarrow t-1\ge4\sqrt{(t-1)^3(5-4t)}\)\(\Leftrightarrow(t-1)^2(8t-9)^2\ge0\) luon dung
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Nhức nhối mãi bài này vì nó làm lag hết máy
Giải
Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)
\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)
Lại theo BĐT Cauchy-Schwarz ta có:
\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)
Ta còn phải chứng minh
\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)
\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)
Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)
Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)
\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)
Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)
\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)
Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến:Gazeta Matematia
còn câu này là USAMO 2003
Toàn đề máu mặt :)